
Science of Computer Programming 94 (2014) 144–163

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Refinement of decomposed models by interface instantiation

Stefan Hallerstede a,∗, Thai Son Hoang b

a Aarhus University, Denmark
b ETH Zurich, Switzerland

h i g h l i g h t s

• A limited form of refinement called interface instantiation is proposed for the Event-B formalism.
• Interface instantiation equips Event-B with a technique for shared-variable refinement.
• Interface instantiation fits seamlessly with Event-B decomposition and refinement.
• A worked out example is used to demonstrate this.
• A correctness proof is provided.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 February 2013
Received in revised form 30 April 2014
Accepted 5 May 2014
Available online 20 May 2014

Keywords:
Event-B
Decomposition
Refinement
External variables
Interface instantiation

Decomposition is a technique to separate the design of a complex system into smaller
sub-models, which improves scalability and team development. In the shared-variable
decomposition approach for Event-B, sub-models share external variables and communicate
through external events which cannot be easily refined.
Our first contribution hence is a proposal for a new construct called interface that
encapsulates the external variables, along with a mechanism for interface instantiation.
Using the new construct and mechanism, external variables can be refined consistently.
Our second contribution is an approach for verifying the correctness of Event-B extensions
using the supporting Rodin tool. We illustrate our approach by proving the correctness of
interface instantiation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

When decomposing a model into sub-models we intend to continue refining the sub-models independently of each
other while preserving the properties of the full model. A suitable decomposition method for Event-B has been proposed
by Abrial [1]. It partitions events of a model between its sub-models. Variables of the model are split correspondingly into
external variables shared by the sub-models and internal variables private to each sub-model. For all external variables of a
sub-model, external events that mimic the effect of corresponding (internal) events of other sub-models have to be added.
If we want to refine external variables, we have to provide a gluing invariant that is functional, say, v = h(w) where v are
the abstract variables and w the concrete variables. Abrial [1] also proposes to rewrite the external events with v := h(w)

so that concrete and abstract events are equivalent. Internal variables and internal events are refined as usual in Event-B [2].
We propose a practical method for external event refinement that aids in structuring and understanding complex models.

This requires a trade-off between generality and practicality. We believe that it would be difficult to generalise the method

* Corresponding author.
E-mail addresses: stefan.hallerstede@wanadoo.fr (S. Hallerstede), htson@inf.ethz.ch (T.S. Hoang).

http://dx.doi.org/10.1016/j.scico.2014.05.005
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.05.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:stefan.hallerstede@wanadoo.fr
mailto:htson@inf.ethz.ch
http://dx.doi.org/10.1016/j.scico.2014.05.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.05.005&domain=pdf


S. Hallerstede, T.S. Hoang / Science of Computer Programming 94 (2014) 144–163 145

Fig. 1. Maintaining the external invariants of several sub-models “manually”.

that we propose without sacrificing its practicality. The theory of the method is not difficult. Our aim is to make using a
difficult technique, the refinement of external variables and external events in Event-B, as easy as possible.

We call a collection of external variables with the external invariants an interface. Modelling interfaces “manually” by
marking the corresponding variables as being external and refining them by specifying functional invariants makes it difficult
to decompose and refine a model repeatedly. Fig. 1 illustrates the problem where a model M is decomposed three times
and the resulting sub-models are refined. We are interested in the two sub-models M1 and M2 at the bottom. How do we
find the shared external invariants?

The lists of variables w1, w2, v1 and v2 are not necessarily disjoint. Let w be the list of variables occurring in w1 or
w2 and v be the list of variables occurring in v1 or v2. We need to find one suitable external invariant v = h(w) to be
used in the sub-models M1 and M2. What is the shape of h? Furthermore, when refining M2 we have to think about the
necessary changes to M1. As a consequence of the current situation, interfaces are refined to implementation level before
decomposition. This complicates the use of decomposition on higher levels of abstraction. We would prefer a method where
the necessary reasoning can be restricted to one place. The functional invariant h should be evident and easily maintainable
also in the face of potential changes to the sub-models and the interfaces.

Using our approach of interface instantiation this can be done. Because we are treating instantiation as a special form
of refinement, we can combine interface instantiation steps with refinement steps. This gives us some liberty in arrang-
ing complex refinements. We also encourage a decomposition style where a separate theory of interface instantiation is
maintained. We think that this contributes substantially to obtain models that are easier to understand and to modify. In-
terface instantiation supports a more incremental approach to decomposition because modifications that concern several
components can be confined to only one place: the interface.

We call the very specific form of interface refinement that we use interface instantiation. To be useful, it should

(i) be more liberal than [1] while not increasing the proof effort,
(ii) help to structure complex mixtures of decomposition and refinement,

(iii) work seamlessly with Event-B as it is. (It should not depend on translations.)

We argue by means of a case study that we have achieved this. The case study addresses a difficulty of relating Event-B re-
finement to Problem Frames elaboration [12] discussed in [7]. It has been composed from [7] and [15]. We have down-sized
it in order to focus on the problem of the refinement of external variables, that is, the interfaces. We have a tool for decom-
position [18] but we do not have implemented a software tool for interface instantiation. Instantiation of carrier sets has
been implemented similarly internally in the ProB tool [14], in order to achieve better performance when model checking
and constraint checking [7]. The case study as presented in [15] uses Problem Frames to achieve traceability of requirements.
We have not used Problem Frames in this article because they are not required to explain interface instantiation. This also
permits us to cast the problem entirely in Event-B terminology. However, the proposed method of instantiation could be
used with Problem Frames as employed in [7,15]. This work extends prior work presented in [9] by allowing instantiations
in a lattice of interfaces.

In the modularisation approach for Event-B presented in [11], the notion of interface has been used to capture software
specifications using some interface variables and operations acting on these variables. The intention behind the use of
interfaces is to separate specifications from their implementations. Our notion of interface is intended to provide efficient
support for refining external variables following Abrial’s decomposition method for system models. There was an earlier
attempt at external variable refinement that is hinted at in the specification of the proof obligation generator for the Rodin
tool [8]. This was considered too complicated and not feasible for large systems that are decomposed and refined repeatedly.
We think, that our approach solves the problem. Poppleton [16] discusses external refinement based on Abrial’s approach
but also does not provide a practicable technique for doing so. The approach of modelling extensible records [6] also permits
a form interface instantiation. A difficulty with using this approach is caused by the explicit mathematical model used for
record representations and the need to specify always values for all fields of a record. However, extensible records could be
used with our approach where it would appear useful. Behavioural interface refinement such as discussed in [17] addresses
changing traces sub-models can exhibit, usually adding new events. It does not consider refinement of shared variables.



Download English Version:

https://daneshyari.com/en/article/435045

Download Persian Version:

https://daneshyari.com/article/435045

Daneshyari.com

https://daneshyari.com/en/article/435045
https://daneshyari.com/article/435045
https://daneshyari.com

