Note

Component connectivity of hypercubes

Shuli Zhao, Weihua Yang*, Shurong Zhang
Department of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

ARTICLE INFO

Article history:

Received 13 April 2016
Accepted 23 May 2016
Available online 14 June 2016
Communicated by S.-y. Hsieh

Keywords:

Hypercubes
Fault-tolerance
Component connectivity
Conditional connectivity

Abstract

The r-component connectivity $c \kappa_{r}(G)$ of a non-complete graph G is the minimum number of vertices whose deletion results in a graph with at least r components. In this paper, we determine the component connectivity of the hypercube $c \kappa_{r+1}\left(Q_{n}\right)=-\frac{r^{2}}{2}+\left(2 n-\frac{5}{2}\right) r-$ $n^{2}+2 n+1$ for $n+1 \leq r \leq 2 n-5, n \geq 6$. This paper extends the results in Hsu et al. (2012) [3].

(C) 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a non-complete graph. A r-component cut of G is a set of vertices whose deletion results in a graph with at least r components. The r-component connectivity $c \kappa_{r}(G)$ of a graph G is the size of the smallest r-component cut of G. By the definition of the $c \kappa_{r}(G)$, it can be seen that $c \kappa_{r+1}(G) \geq c \kappa_{r}(G)$ for every positive integer r.

An interconnection network is usually modeled by a connected graph in which vertices represent processors and edges links between processors. The usual connectivity $\kappa(G)$ of a graph is the minimum number of vertices whose deletion results in a disconnected graph. The connectivity is one of the important parameters to evaluate the reliability and fault tolerance of a network. The r-component connectivity is an extension of the usual connectivity $c \kappa_{2}(G)$. The r-component connectivity and r-component edge connectivity were introduced in [1] and [6] independently. In [3], Hsu et al. determined the r-component connectivity of the hypercube Q_{n} for $r=2,3, \cdots, n+1$. In this paper, we determine the r-component connectivity of the hypercube Q_{n} for $r=n+2, n+3, \cdots, 2 n-4$. This result extends the result in [3].

The n-dimensional hypercube Q_{n} is an undirected graph $Q_{n}=(V, E)$ with $|V|=2^{n}$ and $|G|=n 2^{n-1}$. Each vertex can be represented by an n-bit binary string. There is an edge between two vertices whenever there binary string representation differs in only one bit position. The 3-dimensional and 4-dimensional hypercubes are shown in Fig. 1 and Fig. 2, respectively.

Following Latifi in [4], we express Q_{n} as $D_{0} \odot D_{1}$, where D_{0} and D_{1} are two $n-1$ cubes of Q_{n} induced by the vertices with the i th coordinates 0 and 1 respectively. Clearly, each vertex in Q_{n} has degree n. An independent vertex set is that every two vertices in the set are nonadjacent. Let v be a vertex of a graph G, we use $N_{G}(v)$ to denote the vertices that are adjacent to v. As Q_{n} is bipartite, the neighbor set of a vertex v is independent. Let $A \subseteq V(G)$, we denote by $N_{G}(A)$ the vertex set $\bigcup_{v \in V(A)} N_{G}(v) \backslash V(A)$ and $C_{G}(A)=N_{G}(A) \bigcup A$. For the related studies on the conditional connectivity of the hypercubes, we refer to [2,5,7,8,11,12].

[^0]

Fig. 1. The 3-dimensional hypercube.

Fig. 2. The 4-dimensional hypercube.

2. Main results

Theorem 1. ([3]) Let $n \geq 2$ and $1 \leq r \leq n$, then $c \kappa_{r+1}=r n-\frac{r(r+1)}{2}+1$.
Yang et al. in [10] introduced the following two quadratic functions which are defined as:

$$
\begin{aligned}
& P_{n}(x)=-\frac{x^{2}}{2}+\left(n-\frac{1}{2}\right) x+1,1 \leq x \leq n+1 \\
& Q_{n}(x)=-\frac{x^{2}}{2}+\left(2 n-\frac{3}{2}\right) x-\left(n^{2}-2\right), n+2 \leq x \leq 2 n
\end{aligned}
$$

where $P_{n}(x)$ and $Q_{n}(x)$ denote the minimum number of vertices adjacent to a set of x vertices in Q_{n}. In [7,10], the authors showed that if $X \subseteq N(u)$ with $|X|=x$ for some $u \in V\left(Q_{n}\right)$, then $\left|N_{Q_{n}}(X)\right|=P_{n}(x)$, where $1 \leq x \leq n$. Yang and Meng in [9] showed the following, which plays an important role in the proof.

Lemma 2. ([9]) Assume that $n \geq 5$ and $A \subseteq Q_{n}$. If $|V(A)| \geq 2 n$ and $\left|V\left(Q_{n}\right)-C_{Q_{n}(A)}\right| \geq|V(A)|$, then $\left|N_{Q_{n}}(A)\right| \geq Q_{n}(2 n)$.

Define $f_{n}(x)=-\frac{x^{2}}{2}+\left(2 n-\frac{5}{2}\right) x-n^{2}+2 n+1, n+1 \leq x \leq 2 n-5$. Clearly, $f_{n}(x)$ is strictly monotonically increasing when $x \leq 2 n-3$.

Lemma 3. $P_{n}(x)+P_{n}(a-x) \geq f_{n+1}$ (a) for $a-n \leq x \leq n, n+1 \leq a \leq 2 n$.
Proof. Consider the quadratic function $g(x)=P_{n}(x)+P_{n}(a-x)-f_{n+1}(a)=-x^{2}+a x-n a+n^{2}$. As $a-n \leq x \leq n, g(x)$ achieves its minimum at $x=a-n$ or $x=n$. We derive $g(a-n)=-(a-n)^{2}+a(a-n)-n a+n^{2}=0$ and $g(n)=-n^{2}+a n-n a+n^{2}=0$, so $g(x) \geq 0$ when $a-n \leq x \leq n, n+1 \leq a \leq 2 n$.

Lemma 4. $P_{n}\left(r_{1}\right)+f_{n}\left(r_{2}\right) \geq f_{n+1}(r)$ for $2 \leq r_{1} \leq r-n-1, r_{2} \geq n+1$ and $r_{1}+r_{2}=r \leq 2 n-3$.
Proof. Note that $P_{n}\left(r_{1}\right)+f_{n}\left(r_{2}\right)-f_{n+1}(r)=-r_{1}^{2}+(r-n+2) r_{1}+2 n-2 r$. Let $g\left(r_{1}\right)=-r_{1}^{2}+(r-n+2) r_{1}+2 n-2 r$, $2 \leq r_{1} \leq r-n-1$. Then $g\left(r_{1}\right)$ is minimized at $r_{1}=2$ or $r_{1}=r-k-1$. As $g(2)=0, g(k-n-1)=0$, so the result holds.

https://daneshyari.com/en/article/435182

Download Persian Version:

https://daneshyari.com/article/435182

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ywh222@163.com, yangweihua@tyut.edu.cn (W. Yang).

