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Let G = (V , E) be a graph of order n and let B(D) be the set of vertices in V \ D that have a 
neighbor in the vertex set D . The differential of D is defined as ∂(D) = |B(D)| − |D| and the 
differential of a graph G , written ∂(G), is equal to max{∂(D) : D ⊆ V }. If G is connected and 
n ≥ 3, ∂(G) ≥ n/5 is known. This immediately leads to a linear vertex kernel result (in the 
terminology of parameterized complexity) for the problem of deciding whether ∂(G) ≥ k, 
taking k as the parameter. We then establish a new combinatorial result which establishes 
that ∂(G) ≥ n/4 if G is a connected graph of order n ≥ 6 and if G contains no induced 
path of five vertices whose midpoint is a cut vertex and whose endpoints have degree one. 
This technical combinatorial theorem can be used to derive an even smaller linear vertex 
kernel for general graphs. Also, we show that the related maximization problem allows for 
a polynomial-time factor- 1

4 approximation algorithm.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The development of kernelization algorithms is one of the driving forces in the theory of fixed-parameter tractability. 
In a nutshell, the idea of kernelization can be seen as a means of providing a mathematical (combinatorial) analysis of 
preprocessing.

Sometimes, it is possible to interpret known combinatorial bounds on graph parameters as also providing kernel bounds. 
This in itself is not a new idea. As we will see, analyzing the known worst-case examples can lead to new preprocessing 
rules that help improve those kernel bounds. We exemplify this strategy by proving kernel bounds that are better than 
the ones that could be immediately produced by employing known combinatorial bounds for the problem of finding a 
differential set of size at least k. More precisely, we derive a kernel of order at most 4k. We also show that our kernel 
bounds are optimal with respect to our reduction rules. By this statement, we mean that there are infinite families of 
irreducible graphs that show that no better kernel bound claims are possible based on the proposed reductions. Finally, we 
explain how our combinatorial proofs also yield a polynomial-time algorithm for approximating the differential of a graph 
up to a factor of 1

4 .
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2. Definitions from graph theory and parameterized algorithms

We will use standard notions from graph theory throughout this paper. For instance, N(v) denotes the set of vertices 
that are neighbors of the vertex v and we write v ∼ u when the vertices v and u are adjacent. If U is some set of vertices 
from G = (V , E), then G[U ] denotes the graph induced by U , and G − U = G[V \ U ]. For some vertex v , we also write G − v
instead of G −{v}. We use n(G) to denote the order of graph G = (V , E), i.e., n(G) = |V |. Following [17], if D is a vertex set, 
then N(D) = ⋃

x∈D N(x) is the neighborhood of D , while B(D) = N(D) \ D is the boundary of D , collecting only the proper 
neighbors of vertices from D , and C(D) = V \ (D ∪ B(D)).

The differential of D is defined as ∂(D) = |B(D)| −|D| and the differential of a graph G , written ∂(G), is equal to max{∂(D) :
D ⊆ V }. A set D satisfying ∂(D) = ∂(G) is also called a differential set, or ∂-set for short. The graph parameter ∂ was 
introduced in [17], where several basic properties were derived. As explained in [2,17], the differential of a graph can be 
seen as a simplified deterministic model of influencing a network representing a social group, aiming at maximizing the 
economic or political benefit of those who want to influence the network. Several paper have appeared on the differential 
of a graph, most of purely combinatorial nature. We only refer to [2,5] and the literature quoted therein. More recently, it 
has become clear that the sum of the differential and the Roman domination number [9,13] of a graph equals its order [4]; 
this fact also offers new motivations to study computational aspects of the differential of a graph, as we do in this paper.

In this paper, we are interested in the following related decision problem DIF: Given a graph G and an integer k, 
decide whether ∂(G) ≥ k. We will consider this question from the viewpoint of parameterized complexity; see [11]. More 
precisely, we will discuss problem kernel results with respect to this parameter k. Due to the connections of problem 
kernels and approximation, it should be mentioned that the intractability and approximability of the decision respectively 
maximization problems have been first discussed in [3], leading, for instance, to MAX SNP completeness results for the
Maximum Differential problem on graphs of bounded degree (and also NP-completeness results for DIF, although these 
can be also obtained by the mentioned relation to Roman domination).

There is a subtle difference between minimization and maximization problems when it comes to interpreting linear 
kernel results as approximation results. For instance, as shown by Hochbaum in [14], the famous Nemhauser–Trotter the-
orem [19] that basically provides a linear kernel for Vertex Cover (as later observed in the parameterized complexity 
community) can be also interpreted as a factor-2 approximation for Minimum Vertex Cover, namely by considering all ver-
tices from the kernel (plus the ones added to the cover by the reduction rules), and similar observations are possible for 
many other minimization problems, as long as the whole kernel provides a trivial solution. However, this interpretation is 
no longer possible for maximization problems. As indicated, we only got constant-factor approximability results for Maxi-

mum Differential for graphs of bounded degree, and it was yet unclear what kind of results are to be expected in the case 
of general graphs. The main thrust in the proofs of the kernel results is extremal combinatorics, which in itself does not 
immediately provide algorithmic results. In our case, we will however be able to read the proofs also as an approximation 
algorithm. Hence, we can conclude that, in general graphs, the maximum differential of a graph can be approximated up to 
a factor of 1

4 . Our earlier results show that better approximations are possible for bounded-degree graphs; more specifically, 
in (sub-)cubic graphs, there is a polynomial-time approximation algorithm giving a factor of 35

134 , and for graphs of degree at 
most four, we have an approximation algorithm with a factor of 35

201 . So, while the specific algorithm is still a bit better for 
subcubic graphs, the new general algorithm is better for other degree bounds. However, we will also show how to further 
improve on the approximation ratios for degree-bounded graphs. This will lead us, for instance, to a factor- 1

2 approximation 
on subcubic graphs.

We are mostly interested in the notion of a (problem) kernel, as kernelization is known to be equivalent to fixed-parameter 
tractability. In our case, we are looking for a function g : N → N and a polynomial-time algorithm that transforms an 
instance (G, k) of DIF into an equivalent instance (G ′, k′) such that the size of G ′ is bounded above by g(k) and k′ ≤ k. 
Such an algorithm is also known as a kernelization (algorithm). Notice that we will also allow kernelizations to directly 
answer YES or NO, which would formally correspond to producing trivial YES- or NO-instances of DIF, respectively. We will 
first show a kernelization providing a kernel (G ′, k′) where the order of G ′ is bounded by 5k′ , which is based on known 
combinatorial bounds. Then, using more sophisticated kernelization rules and some new combinatorial insights into the 
differential of a graph, we improve this bound to 4k′ . This also comprises the main algorithmic result of this paper. The 
main technical contributions (Theorems 3.4, 6.1 and Proposition 6.3) are however of a purely combinatorial nature. This also 
means that the basic structure of our kernelization algorithm is very simple: apply some reduction rules to exhaustion and 
then either reply YES or conclude that the order of the graph is upper-bounded by four times its differential. This result 
is complemented by showing an infinite family of irreducible graphs that prove that the analysis of the kernel size of our 
kernelization algorithm is tight with respect to the proposed reduction rules. Finally, we also give FPT algorithms for our 
problem, more precisely, we show that it can be decided in time O∗(ck) if a given graph G has a differential set of size at 
least k, for some constant c ≈ 9. Here, the O∗-notation suppresses polynomial factors. Hence, an O∗(ck) algorithm for DIF 
has running time O(ck · p(n(G))) for some polynomial p on input G and k.

Recall that a graph consisting of one central vertex c and d neighbors that in turn have no further neighbors other than 
c is also known as a star Sd = K1,d . If S = (V , E) is an Sd star with center c, then V \ {c} will be also called ray vertices
and the edges will be termed rays. We also denote an Sd star S by S = {c; v1, . . . , vd} to indicate that c is its center and 
v1, . . . , vd are its ray vertices. We will call an Sd star big if d ≥ 2.
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