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Uniform crossover and bit-flip mutation are two popular operators used in genetic
algorithms to generate new solutions in an iteration of the algorithm when the solutions
are represented by binary strings. We use the Walsh decomposition of pseudo-Boolean
functions and properties of Krawtchouk matrices to exactly compute the expected value
for the fitness of a child generated by uniform crossover followed by bit-flip mutation from
two parent solutions. We prove that this expectation is a polynomial in ρ , the probability
of selecting the best-parent bit in the crossover, and μ, the probability of flipping a bit in
the mutation. We provide efficient algorithms to compute this polynomial for Onemax and
MAX-SAT problems, but the results also hold for other problems such as NK-Landscapes.
We also analyze the features of the expectation surfaces.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In evolutionary computation, the classical variation operators are crossover and mutation. Crossover takes two solutions
as input and generates one or more solutions combining the original ones. Mutation takes one solution and introduces a
small change on it. These operators are usually run in sequence: crossover comes first and then mutation is applied to the
output solution of crossover. The operators act on the genotype, that is, on the representation of the solutions. Thus, they
are linked to the solution representation. Many different crossover and mutation operators have been defined for different
representations in the literature. In the case of the binary strings some examples are 1-point crossover, 2-point crossover,
uniform crossover, bit-flip mutation and 1-bit-flip mutation [1].

In particular, Uniform Crossover (UX) builds a new solution by randomly selecting each “allele” from one of the parent
solutions. The “allele” in the best of the two parents is selected with probability ρ , which is called the bias. A common value
for this bias is ρ = 0.5, where each parent has the same probability of providing its “allele” to the offspring. The so-called
bit-flip mutation (BF) flips each individual bit of the binary string with a probability μ. In the literature it is common to
use μ = 1/n, which flips one bit per solution on average. From the point of view of runtime analysis, it has been proven
that the value μ = c/n where c is a constant is optimal if we want to minimize the number of iterations to reach the global
optimum on a linear pseudo-Boolean function using a (1 + 1) Evolutionary Algorithm (EA) [2].

In this work we extend the results in [3] by providing a closed-form expression for the expected value of the objective
function evaluated in a solution that is the result of applying UX and BF to two parent solutions. This expected value is
a function of ρ and μ and, for this reason, we also call it expectation surface. The previous work [3] only considered UX.
With the results presented in this paper we combine UX and BF and also prove in a different form the results in [4,5] for
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the expectation after BF. We also extend the formula to compute higher order moments, and not only the expected fitness
value.

From a theoretical point of view, the closed-form formulas could help to understand the behavior of the two operators
acting together. From a practical point of view, they could be used to develop new search strategies or operators. In partic-
ular, using for example the expected value and the standard deviation we can compute some bounds for the fitness values
that the algorithm can find with a high probability after applying the operators [6]. Using this approach it would be possible
to try different values for ρ and μ before applying the operators in order to improve the chances of finding good solutions.

The remainder of the paper is organized as follows. In the next section the mathematical tools required to understand
the rest of the paper are presented. In Section 3 we present our main contribution of this work: the expected fitness value
of the solution generated by UX and BF. We discuss in that section how the formula can be used to compute higher order
moments (other than the expectation). Section 4 provides closed-form formulas for the expression of the expected fitness
value in the case of the Onemax and MAX-SAT problems. In Section 5 we analyze the features of the expectation surface
and provide a procedure to build an instance of weighted MAX-SAT having the desired surface. Finally, Section 6 presents
the conclusions and future work.

2. Background

Let us first clarify the notation used for binary strings. We write here B
n as a synonym of Z

n
2: Z

n
2 = B

n . This set forms
an Abelian group with the component-wise sum in Z2 (exclusive OR), denoted with ⊕. Given an element z ∈ B

n , we will
denote with |z| the number of ones of z and with z the complement of the string (all bits inverted). Given a set of binary
strings W and a binary string u we denote with W ∧ u the set of binary strings that can be computed as the bitwise AND
of a string in W and u, that is, W ∧ u = {w ∧ u | w ∈ W }. For example, B4 ∧ 0101 = {0000,0001,0100,0101}. Given a string
w ∈ B

n , the set B
n ∧ w defines a hyperplane in B

n [7]. We will denote with i the binary string with position i set to 1 and
the rest set to 0. We omit the length of the string n in the notation, but it will be clear from the context. For example, if
we are considering binary strings in B

4 we have 1 = 1000 and 3 = 0010. We will denote with ∨ the bitwise OR operator
between two binary strings. We will assume that the ∧ operator has precedence over ∨. However, we will use parentheses
to clarify the precedence.

Definition 1. We define a pseudo-Boolean function f as a map between B
n , the set of binary strings of length n, and R, the

set of real numbers.

Let us consider the set of all the pseudo-Boolean functions defined over B
n , RB

n
. We can think of a pseudo-Boolean

function as an array of 2n real numbers, each one being the function evaluation of a particular binary string of B
n . Each

pseudo-Boolean function is, thus, a particular vector in a vector space with 2n dimensions. Let us define the dot-product
between two pseudo-Boolean functions as:

〈 f , g〉 =
∑
x∈Bn

f (x)g(x).

Now we introduce a set of functions that will be relevant for our purposes in the next sections: the Walsh functions [8].

Definition 2. The (non-normalized) Walsh function with parameter w ∈ B
n is a pseudo-Boolean function defined over B

n

as:

ψw(x) =
n∏

i=1

(−1)wi xi = (−1)|w∧x| = (−1)
∑n

i=1 wi xi , (1)

where the subindex in wi and xi denotes the i-th component of the binary strings w and x, respectively.

We can observe that the Walsh functions map B
n to the set {−1,1}. We define the order of a Walsh function ψw as

the value |w|. Some properties of the Walsh functions are given in the following proposition. The proof can be found in
Vose [9].

Proposition 1. Let us consider the Walsh functions defined over Bn. The following identities hold:

ψ0 = 1, (2)

ψw⊕t = ψwψt, (3)

ψw(x ⊕ y) = ψw(x)ψw(y), (4)

ψw(x) = ψx(w), (5)
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