
Theoretical Computer Science 557 (2014) 120–127

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note

Less space: Indexing for queries with wildcards ✩

Moshe Lewenstein a, J. Ian Munro b, Venkatesh Raman c,
Sharma V. Thankachan d,∗
a Bar-Ilan University, Israel
b University of Waterloo, Canada
c The Institute of Mathematical Sciences, India
d Georgia Institute of Technology, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 May 2014
Received in revised form 5 August 2014
Accepted 1 September 2014
Available online 8 September 2014
Communicated by G. Ausiello

Keywords:
String indexing
Data structures
Wildcards
Range searching
Suffix trees

Text indexing is a fundamental problem in computer science, where the task is to index
a given text (string) T [1..n], such that whenever a pattern P [1..p] comes as a query, we
can efficiently report all those locations where P occurs as a substring of T . In this paper,
we consider the case when P contains wildcard characters (which can match with any
other character). The first non-trivial solution for the problem was given by Cole et al.
[11], where the index space is O (n logk n) words or O (n logk+1 n) bits and the query time
is O (p +2h log logn +occ), where k is the maximum number of wildcard characters allowed
in P , h ≤ k is the number of wildcard characters in P and occ represents the number of
occurrences of P in T . Even though many indexes offering different space-time trade-offs
were later proposed, a clear improvement on this result is still not known. In this paper, we
first propose an O (n logk+ε n) bits index achieving the same query time as the of Cole et
al.’s index, where 0 < ε < 1 is an arbitrary small constant. Then we propose another index
of size O (n logk n logσ) bits, but with a slightly higher query time of O (p + 2h log n + occ),
where σ denotes the alphabet set size.
We also study a related problem, where the task is to index a collection of documents (of
n characters in total) so as to find the number of distinct documents containing a query
pattern P . For the case where P contains at most a single wildcard character, we propose
an O (n log n)-word index with optimal O (p) query time.

Published by Elsevier B.V.

1. Introduction and related work

Text indexing is a fundamental problem in computer science, where the task is to index a given text (string) T [1..n],
such that whenever a pattern P [1..p] comes as a query, we can efficiently report all those locations where P occurs as a
substring of T . The classic data structures for solving this problem are suffix trees [32] and suffix arrays [24]. Both these
linear space (O (n log n) bits) structures can perform pattern matching in optimal O (p + occ) and O (p + log n + occ) time
respectively, where occ is the number of occurrences of P in T .1 Approximate string matching and wildcard matching

✩ Early part of this work appeared in ISAAC 2013 [21]. Work supported by NSERC of Canada and the Canada Research Chairs program.

* Corresponding author.
E-mail addresses: moshe@macs.biu.ac.il (M. Lewenstein), imunro@uwaterloo.ca (J. Ian Munro), vraman@imsc.res.in (V. Raman),

sharma.thankachan@gmail.com (S.V. Thankachan).
1 All logarithms in this article are base 2.

http://dx.doi.org/10.1016/j.tcs.2014.09.003
0304-3975/Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.tcs.2014.09.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:moshe@macs.biu.ac.il
mailto:imunro@uwaterloo.ca
mailto:vraman@imsc.res.in
mailto:sharma.thankachan@gmail.com
http://dx.doi.org/10.1016/j.tcs.2014.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.09.003&domain=pdf

M. Lewenstein et al. / Theoretical Computer Science 557 (2014) 120–127 121

are two of the natural extensions of this problem, and have been studied extensively [2,11,15,8,18,30,31,14,6,19,20]. These
problems have several applications in information retrieval, bioinformatics, data mining, and internet traffic analysis [7,13].

The focus of this paper is on the following problem: index T for handling matching of a query pattern P with at most
k wildcards. A wildcard, also known as don’t care character, represented by φ, can match with any other character in the
alphabet set Σ of size σ . Therefore, the pattern P can be written as P0φP1φ..Ph−1φPh , the concatenation of substrings
P0, P1, ...Ph−1, Ph separated by φ and h ≤ k is the number of wildcards in P . The first non-trivial solution for this problem
was proposed by Cole et al. [11], where the index space is O (n logk n) words or O (n logk+1 n) bits and query time is
O (p + 2h log log n + occ). Recently, Bille et al. [6] proposed an index, which is a generalization of Cole et al.’s index. The
space and query time are O (n log n logk−1

β n) words and O (p + βh log log n + occ) respectively, where 2 ≤ β ≤ σ . Note that
Cole et al.’s [11] result can be obtained by substituting β = 2. Bille et al. [6] also proposed an optimal O (p +occ) time index
of space O (nσ k2

logk log n) words. Another space-efficient index of O (n log n) words proposed by Cole et al. [11] can answer
this query in O (p + σ h log log n + occ) time, and is improved to O (n) words without affecting the query time [6]. Recently,
Lewenstein et al. improved the query time to O (p + σ h

√
log log log n + occ) [23]. Several other linear space structures also

exist in literature, such as the ones by Iliopoulos and Rahman [25], and Lam et al. [18]. However, these indexes take Θ(nh)

worst case time for answering the query. Despite of all these continued efforts, a clear improvement over the seminal result
by Cole et al. [11] (i.e., O (n logk+1 n) bits and O (p + 2h log logn + occ) time) is still not known.

In this paper, we describe two results. The first one is an O (n logk+ε n) bits index with O (p + 2h log log n + occ) query
time, where 0 < ε < 1 is an arbitrary small constant. The second one is an O (n logk n logσ) bits index, but with a slightly
worse query time of O (p + 2h log n + occ), where Σ = [σ] denotes the alphabet set. Notice that our first result is a clear
improvement over the earlier result by Cole et al., whereas the second one provides another space-time trade-off for this
problem when the alphabet set is small.

Another problem that is strongly connected to the problem under consideration is to index the text wildcards. This was
solved in Cole et al. [11] as well. However, for this case, better solutions have appeared in a succession of papers and
indexes with succinct space and competitive query time [18,30,31,14] are available in the literature. Yet another related
problem is that of indexing with gaps. Gaps are essentially longer wildcards. In [16] an index was proposed supporting
queries of patterns containing one gap with a predefined length. This result builds on the result of [2]. The case of one gap
was further improved by Bille et al. [5] with optimal query time. In [19] results were shown for the case when there is a
larger number of gaps.

A related problem we study in this paper is the document-frequency computation (or document counting) of patterns
with wildcards. Let D = {d1, d2, d3..} be a collection of (string) documents of total length n. The document-frequency of an
input pattern P is the number of distinct documents in D containing P as a substring. Such queries (without wildcards)
can be answered in optimal O (p) time using a simple linear space data structure of O (n) words (which is essentially a
suffix tree with constant amount of information augmented with its internal nodes). However the problem becomes more
challenging if the pattern or documents contain wildcards or if we allow a bounded error in the substring matching. We
consider the case when the query pattern P contains a single wildcard character, and propose an O (n log n)-word data
structure with optimal O (p) query time. See [22] for a recent result on the reporting version of this problem, where the
index space is O (n) words and the query time is O (p + σ

√
log log log n + ndoc). Here ndoc is the output size.

Outline Section 2 gives the preliminaries. In Section 3, we describe a classical framework for the case where k = 1 and
then in Section 4, the framework by Cole et al.’s for k ≥ 1. Section 5 describes our space-efficient data structures. Section 6
describes our result on indexing documents and we finally conclude in Section 7.

2. Preliminaries

2.1. Suffix trees and suffix arrays

Suffix trees [32] and suffix arrays [24] are two classic data structures for online pattern matching queries. For a text
T [1..n], substring T [i..n], with i ∈ [1, n], is called a suffix of T . The suffix tree for T is a lexicographic arrangement of all
these n suffixes in a compact trie structure, where the ith leftmost leaf represents the ith lexicographically smallest suffix.
For each node v in the suffix tree, we use path(v) to denote the concatenation of edge labels along the path from the root
to v . For any pattern P (of length p), the locus of P in the suffix tree is defined to be the highest node v (i.e., the closest
node from the root) such that P is a prefix of path(v) and can be computed in O (p) time.

The suffix array SA[1..n] is an array of length n, such that SA[i] is the starting position of the ith lexicographically
smallest suffix of T . The suffix array has an important property that the starting positions of all suffixes with the same
prefix are always stored in a contiguous region in SA. Based on this property, the suffix range of a pattern P in SA is defined
as the maximal range [sp, ep] such that for all j ∈ [ep, ep], SA[j] is the starting point of a suffix of T with P as a prefix. In
other words, the suffix range of a string represents the set of leaves in the subtree of its locus node in suffix tree. We also
define its inverse, SA−1 to be an array such that SA[i] = j if and only if SA−1[j] = i. Both suffix trees and suffix arrays (along
with an auxiliary data structure called LCP array) take (n log n) bits space and can perform pattern matching in optimal
O (p + occ) and O (p + logn + occ) time respectively, where occ is the number of occurrences of P in T .

Download English Version:

https://daneshyari.com/en/article/436303

Download Persian Version:

https://daneshyari.com/article/436303

Daneshyari.com

https://daneshyari.com/en/article/436303
https://daneshyari.com/article/436303
https://daneshyari.com

