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1. Introduction

Biological systems play a fundamental role in climate dynamics
and geochemical cycling (Anderson, 2005). The ecological models
used to describe the population dynamics of these systems are
typically complex, replete with nonlinear dynamics, and solved
numerically. Coexistence in plankton ecosystems has been a
contentious topic in theoretical ecology for quite some time. Using
the results of laboratory experiments Gause (1934) posited the
‘‘principle of competitive exclusion’’, which says that the number
of populations that can coexist in an environment is equal to the
number of ecological niches in the system. Observations of nature,
where coexistence of competitors is common, contradict this
classical theory leading to Hutchinson’s ‘‘paradox of the plankton’’
(Hutchinson, 1961). The advent of modern computing means that

it is possible to solve mathematical ecosystem models that are far
more complex than is possible using traditional analytic techni-
ques (Anderson, 2010). Three dimensional ecosystem models
coupled to chemical/physical ocean models, commonly referred to
as dynamic green ocean models (DGOMs), are becoming an
increasingly important tool in the study of global biogeochemical
cycling (Hood et al., 2006; Hashioka et al., 2013; Sailley et al.,
2013). The solutions of DGOMs (and other similarly formulated
models) are very sensitive to the mathematical form of their
nonlinear equations and are prone to instability which, in
combination with often poorly constrained parameters, means
that inordinate amounts of time and resources are often spent
calibrating and validating parameter values (Denman, 2003;
Fulton et al., 2003; Anderson et al., 2010). One of the difficulties
facing model developers is the in silico realisation of competitive
exclusion – many simulated planktonic groups experience
spurious extinction.

Ecosystem models that use a currency of limiting nutrient and
respect local mass balance (which many, if not most, computer
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A B S T R A C T

The growth and loss terms of interacting populations, called functional responses, are known to have a

significant impact on the extinction dynamics of ecological models. We are able to construct models that

preclude extinction for any parameter value, simply through the use of particular combinations of

functional responses. These structural coexistence (SC) models have functional responses where the per

capita growth terms remain positive (non-vanishing), while the per capita loss terms tend to zero

(vanishing) as the relevant population tends to zero. Any of the commonly used functional responses,

such as Holling Types I, II, and III, lead to non-vanishing growth terms for nutrient uptake, while any type

of nonlinearity such as Ivlev or density dependent mortality of the population leads to vanishing loss

terms. In order for herbivore/carnivore feeding terms to simultaneously be a vanishing loss term for the

prey and a non-vanishing growth term for the predator, the exponent on the predator population must

be exactly one, whilst the exponent on the prey population must be greater than one (such as a Holling

Type III response). Any SC system with at least one autotroph and (possibly many) heterotrophs will

always possess an internal equilibrium point. We show that the inclusion of linear mortality terms are,

however, sufficient to restore the possibility of population extinctions. This allows for the formulation of

‘mixed’ systems, where some populations are guaranteed to coexist, whilst others are subject to the

possibility of extinction. SC models have use in studies of, for example, biogeochemical cycling or the

plankton base of fisheries models, where extinction is not desirable or relevant.
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models of marine ecosystems do) have been constructed to show
that in many cases competing populations go extinct (Armstrong
and McGehee, 1980), or to ensure a priori that no populations go
extinct, regardless of the parameter values chosen (Cropp and
Norbury, 2012b; Bates et al., 2015). Models that ensure coexis-
tence through their choice of functional response have been
dubbed structural coexistence (SC) models. Specifically, SC
models have vanishing per capita loss terms (i.e. the per capita

loss term goes to zero as the population goes to zero) and non-
vanishing per capita growth terms (i.e. the per capita growth term
remains positive as the population goes to zero). This property
ensures that no boundary equilibrium points of an SC model are
stable, which then prevents any populations from going extinct.
The ease and efficacy of using this approach to construct complex
ecosystem models was recently demonstrated by Bates et al.
(2015) who developed an SC model with 21 populations to
simulate a near shore Antarctic ecosystem and used its boundary
equilibrium properties to accelerate the convergence of the
parameter calibration.

SC models are useful in studies that require stable populations
to recycle various nutrients and chemicals, and for which
extinction or invasion events are not relevant. For instance, the
model developed by Bates et al. (2015) was used to study the
partitioning and recycling of persistent organic pollutants in
Antarctic marine environments (Bates et al., submitted to
Environmental Chemistry). Vallina and Le Quéré (2011) used an
SC model to calculate resilience, resistance and interaction
strength in six population food-webs. Whilst SC models are useful
in the aforementioned types of applications, they are not
appropriate in studies where extinction is an important factor.

The aim of this study is to clearly articulate the properties of SC
models, what mathematical mechanisms give rise to these
properties, and to examine the component functional responses
that lead to SC models. In addition, we outline how to construct SC
models (including ‘‘mixed’’ models where not all populations have
the SC property). To achieve all of this, we examine a number of
relatively straightforward (two and three population) illustrative
examples. The understanding obtained from these heuristic
models gives insight into the properties of more complex models,
such as fisheries models or DGOMs. We begin in Section 2 by
showing per capita population interactions that satisfy local mass
balance lead to global mass conservation. The satisfaction of local
mass balance means there must be symmetry in the functional
responses that describe the interactions of consumers and
resources. Familiar mathematical forms, such as Holling Types I,
II, and III conform to these requirements. Assuming a closed system
(i.e. a constant total amount of limiting nutrient) facilitates
mathematical analysis, allowing us to gain insight not otherwise
possible in more complex systems.

We then find the small population limit of functional responses
that yield SC models. There are a number of studies that have found
that Holling Type III grazing (Haydon, 1994; Gentleman et al.,
2003; Anderson et al., 2010) and quadratic mortality (Steele and
Henderson, 1992; Edwards and Brindley, 1996, 1999) functional
responses have a stabilising effect on ecosystem models, leading to
a greater probability of population coexistence. In Section 3 we
derive the most general forms that ensure coexistence of
populations, even when parameters vary greatly.

We also examine the location and properties of equilibrium
points in SC models, which is a key question in theoretical
ecosystem modelling. By focusing on the boundary equilibrium
points (i.e. where one or more populations are zero), we show how
to classify the (local) stability of these boundary points in terms of
the model parameters. In Section 4 we use this information to
ascertain the location and orientation of null surfaces, which we
then use to infer the existence of internal equilibrium point(s). This

analysis shows that for systems of autotrophs and heterotrophs
(so long as there is at least one autotroph to uptake inorganic
nutrient), there is always an internal equilibrium point in these
SC models. We also show that ‘mixed’ systems, where some
populations are SC and others are not, can be constructed relatively
simply, and give an example of that in Section 4.5. These mixed
systems are particularly useful for fisheries models where it is
important to ensure the existence of the plankton base, but,
extinction is an important property to capture for higher trophic
populations.

2. Model formulation

We utilise the conservative normal (CN) framework (Cropp and
Norbury, 2009, 2012a, 2013) in the formulation and analysis of SC
models. Formulating our models in the CN framework simplifies
the analysis of our models and as such, its utilisation is a matter of
analytic convenience. In analogy with mesocosms, which are
simpler to control and observe than the natural world, the results
we derive here qualitatively apply to more complex models that do
not strictly adhere to the CN framework. In this section, we first
describe the elements of the CN framework that are most pertinent
to our study. Much of what is contained in this section is a
summary of existing work, and a more complete description of the
CN framework can be found in the aforementioned references.

In many models it is common to use a limiting nutrient (such as
nitrogen) as the ‘model currency’ (Denman, 2003). Populations are
measured in terms of the total organismal nutrient, rather than
biomass or abundance. The per capita growth and loss of a
population j 2 1, 2, . . ., n is given by

1

x̃j

dx̃j

dt
¼ f̂ jðx̃1; x̃2; . . .; x̃n; ÑÞ (1)

where x̃j is the total organismal nutrient of the population, Ñ is the
amount of abiotic nutrient, and n is the number of interacting
populations in the ecosystem. The ‘life function’, f̂ j, describes the
various per capita growth and loss processes. Whilst the term ‘per

capita’ typically means per individual, here we take it to mean any
of per unit mass, density, or concentration of nutrient.

The life function, which has units of inverse time, can be divided
into four parts: (1) growth from inorganic nutrient uptake (ĥj), (2)
growth from feeding (ĝij), (3) loss from being fed upon (p̂jk), and (4)
other losses (m̂j), such as natural mortality,

f̂ jðx̃1; x̃2; . . .; x̃n; ÑÞ ¼ ĥjðx̃1; x̃2; . . .; x̃n; ÑÞ

þ
X
i2 ij

ĝijðx̃1; x̃2; . . .; x̃nÞ�
X
k2kj

p̂jkðx̃1; x̃2; . . .; x̃nÞ

�m̂jðx̃jÞ;

(2)

where ij is a list of populations that j feeds upon, and kj is a list of
populations that feed upon j. Conventionally subscripts are
ordered in ascending trophic level, usually leading to ij � {1, 2,
. . ., j � 1} and kj � {j + 1, j + 2, . . ., n}. All of the functions ĥj, ĝij, p̂jk,
and m̂j must be positive for sensible values of x̃1; x̃2; . . .; x̃n [see
Eq. (11) and surrounding discussion for what we mean by ‘sensible
values’].

Any model whose currency is nutrient should respect local
mass balance, that is, nutrient cannot be created, destroyed, or lost
when it is transferred between the various populations or between
a population and the abiotic nutrient pool. A corollary of local mass
balance is that losses from one population must be precisely
balanced by growth in another population and/or the abiotic
nutrient pool. As a consequence there must be some symmetry in
the equations describing the rate of change of the various
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