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1. Introduction

Ecosystems do not necessarily shift gradually with changes in
the amount of resources (Scheffer et al., 2001; Ripple and Beschta,
2006; Móréh et al., 2009; Claussen et al., 2013; Dekker, 2013).
Observed patterns strongly suggest that multiple equilibria exist
under similar climate regimes (Hirota et al., 2011; Staver et al.,
2011b; Scheffer et al., 2012), which implies that ecosystems may
shift from one stable state to another (Rietkerk et al., 2004; Hirota
et al., 2011). More importantly, most of these transitions are
subcritical as the shift is irreversible (Scheffer et al., 2009; Kéfi
et al., 2013). Such critical transitions may lead to catastrophic
changes of the landscape (Staver et al., 2011a) and result in regular
vegetation patterns (Rietkerk et al., 2004), which in turn strongly
affects local climate through biophysical and biochemical feed-
backs (Bonan, 2008; Seneviratne et al., 2010; Dekker et al., 2007).

To anticipate to potential catastrophic transition of ecosystems,
numerous studies have tried to find early warning indicators of the
transition to desertification (Rietkerk et al., 2004; Kéfi et al., 2007a;
Scheffer et al., 2009; Dakos et al., 2008). The phenomenon of
‘critical slowing down’, expressing that the recovery rate of the
system to perturbations decreases near such a transition, has lead
to useful early warning indicators, such as the lag-1 autocorrela-
tion (van Nes and Scheffer, 2007; Scheffer et al., 2009). Also
indicators based on the changes in spatial correlation of vegetation
patterns have been developed (Dakos et al., 2010). In general,
however, these classical indicators show only irregular monotonic
behaviour and it is difficult to determine how close the system is to
transition and when to give an alarm. Ideally, one likes to have the
availability of indicators which give a sharp peak just before the
transition.

Indicators based on complex interaction networks were shown
to have this desired ‘peaky’ property when applied to a highly
conceptual ecological model, the local positive feedback model
(Tirabassi et al., 2014). Although the network based indicators have
a higher quality factor, for this model also the classical indicators
perform well regarding the desertification transition. A more
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A B S T R A C T

Numerous model studies demonstrate that ecosystems might not shift smoothly with a gradual change

in resource concentration. At specific points, vegetation can suddenly shift from one stable state to

another. To predict such undesirable shifts, statistical indicators are proposed for early warning

prediction. These so-called classical indicators can address whether vegetation state is moving towards

the tipping point of an abrupt transition, however when the transition will occur is hard to predict.

Recent studies suggest that complex network based indicators can improve early warning signals of

abrupt transitions in complex dynamic systems. In this study, both classical and network based

indicators are tested in a coupled land–atmosphere ecological model in which a scale-dependent

hydrology-infiltration feedback and a large scale vegetation–precipitation feedback are represented.

Multiple biomass equilibria are found in the model and abrupt transitions can occur when rainfall

efficiency is decreased. Interaction network based indicators of these transitions are compared with

classical indicators, such as the lag-1 autocorrelation and Moran’s coefficient, with particular focus on

the transition associated with desertification. Two criteria are used to evaluate the quality of these early

warning indicators and several high quality network based indicators are identified.
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challenging test of the capabilities of network based indicators is
the scale-dependent feedback model suggested in Rietkerk et al.
(2002). For this model, two classical indicators (lag-1 autocorrela-
tion and Moran’s coefficient, see Section 2.2) show unexpected
trends when approaching the critical transition (Dakos et al.,
2011).

As was indicated in Dijkstra (2011), the structure of the multiple
equilibria in a scale-dependent feedback model is complicated
because of the appearance of a multitude of saddle-node bifurca-
tions. Near the transition to the desert state, many other unstable
steady states influence the spatio-temporal behaviour of the
vegetation field. It suggests that the self-organization mechanisms
in such a model increases the complexity of the spatial and temporal
correlations of the vegetation signal, which decreases the perfor-
mance of the classical indicators. It is therefore interesting to
investigate how network based indicators will perform in such a
scale-dependent feedback model. Moreover, the network indicators
will yield more information than looking alone at the patterns
themselves as being possible indicators.

In the present study, the land–atmosphere model as presented
in Konings et al. (2011) is used to test the performance of network
based indicators regarding the desertification transition. This
model couples land surface processes (Rietkerk et al., 2002) and the
dynamics of the atmosphere boundary layer (Konings and Katul,
2010). It captures two important positive feedback mechanisms,
the small-scale biomass-infiltration feedback (Rietkerk et al., 2002)
and the large-scale precipitation-transpiration feedback (Ente-
khabi et al., 1992; Dekker et al., 2007). At small scales, increasing
biomass is able to promote water infiltration rate, which provides
more soil water and in turn maintains more biomass (Rietkerk
et al., 2000). At large scales, increased precipitation leads to more
biomass, which can increase transpiration rate and recharge water
vapour in the atmosphere. Consequently more rainfall events can
occur and increase the amount of precipitation (Entekhabi et al.,
1992). In addition to these feedbacks, also the seasonal variability
of rainfall, which is shown to be important in arid and semi-arid
regions (Baudena and Provenzale, 2008; Good and Caylor, 2011;
Siteur et al., 2014), is represented in the model.

Output from a large number of simulations with this model are
used to reconstruct interaction networks from which early
warning indicators of transitions are derived. The performance
of these indicators is compared with those of classical indicators
with the aim to understand the behaviour of these indicators near
the desertification transition. In Section 2 the essential features of
the land–atmosphere model and the complex network methodol-
ogy are described. Results of the simulations of the land–
atmosphere model are presented in Section 3.1 and the perfor-
mance of the classical and network based early warning indicators
is presented in Section 3.2. A summary and discussion of the results
is given in Section 4.

2. Model and methodology

2.1. The land–atmosphere model

The land–atmosphere model (Konings et al., 2011) couples a
one-column atmospheric boundary layer (ABL) model (Konings
and Katul, 2010) with a scale dependent feedback vegetation
model (Rietkerk et al., 2002). The ABL model is seasonally forced to
capture the African monsoon variability (Konings et al., 2011). The
vegetation model considers the interactions among surface water,
biomass dynamics and soil moisture (Rietkerk et al., 2002). The
surface energy balance contains the turbulent momentum and
moisture exchange between the land and atmosphere (Konings
et al., 2011). In this study, state-dependent stochastic noise is
included for biomass, surface water and soil moisture to represent

unresolved processes (Dakos et al., 2011; Tirabassi et al., 2014); the
detailed equations of the model are presented in Appendix A. A full
description of the model can be found in Konings et al. (2011).

The fundamental characteristic of the land–atmosphere cou-
pling is the water and energy exchange between the land surface
and the ABL. The vegetation model simulates the biomass
dynamics and determines the sensible and latent heat fluxes.
The sensible heat flux (H) changes the boundary layer height (h)
while the latent heat flux (LE) affects the specific humidity (q) of
the atmosphere. Convective rainfall occurs when h crosses the
Level of Free Convection (LFC) and the Lifting Condensation Level
(LCL). The LFC is the altitude where the lifted parcels become
buoyant, while the LCL is the height where the condensation starts.
When rainfall occurs, the amount of rainfall is determined by the
total moisture content in the atmosphere and a rainfall efficiency
(h, Eq. (A.7)). The parameter h will be the main control parameter
in the model and controls (together with other processes as
transpiration, etc.) the total amount of annual precipitation
(Konings et al., 2011). When h =1, the simulated mean annual
precipitation is approximately 365 mm yr�1. Note that the mean
annual precipitation (P) is dependent on the strength of the
vegetation–precipitation feedback. Thus h is used as an index to
represent the dryness of climate.

The model was applied on 75 � 75 grid cells. Surface runoff, soil
water spread and biomass colonization were considered as main
land surface processes (Eqs. (A.8), (A.9) and (A.15)). The energy
balance was calculated for each grid cell. However, spatial
averaged sensible and latent heat fluxes were used to estimate
water and energy exchanges between the land and atmosphere. To
extract biomass equilibria under specific climate, the simulation
started with a relative high initial biomass. The time step for
atmospheric convection was 150 s, while biomass was updated
once per day. The model was run until the biomass state reached
equilibrium. As a criterion for reaching the equilibrium, we
required that the maximum (over the whole grid) relative
difference of the annual mean values of the biomass field between
two neighbouring years was less than 0.5%.

The land–atmosphere model accounts for the annual cycle of
solar radiation. Moreover, the observed climate forcing data (slope
g and intercept f of the free atmosphere for specific humidity q and
potential temperature u, see Appendix A) contains seasonal
atmospheric variability. To remove strong seasonal correlations
due to forcing in the biomass time series B̂n

i , where i refers to a
location in space (i.e., a specific grid cell) and n to the time index,
the average over M years (M = 5 in this paper) is removed for each
day of the year. More specifically, for daily data with n(j,
k) = 365 � (j � 1) + k (leap years ignored), the detrended time
series Bn

i is determined from

Bnðj;kÞ
i ¼ B̂nðj;kÞ

i � 1

M

XM
j¼1

B̂nðj;kÞ
i : (1)

The correlation coefficient between Bn
i and B̂n

i is less than 0.2 in
all randomly selected values of i, implying that the annual cycle is
successfully removed from each time series. Note that the
detrended biomass Bn

i can have negative values as it is an anomaly
with respect to the seasonal cycle. All biomass time series referred
to below in this paper are seasonally detrended.

2.2. Early warning indicators

‘Critical slowing down’ is demonstrated as the essential
character of dynamic systems approaching a critical transition
(Scheffer et al., 2009). This theory focuses on the recovery rate of a
system when it turns back to the equilibrium state from a small
perturbation. If the system state is far from the tipping point, the
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