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Newly proposed node segregation index is not
suitable for analyzing unimode food webs
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A B S T R A C T

Strona and Veech (2015) developed a new node segregation (or node overlap) index for analysing
ecological network structure based on the Veech (2013)’s species co-occurrence probabilistic model,
which was originally applied to species-site matrices. However, a species-site matrix for analysing
species co-occurrence patterns and an adjacency matrix for characterising unimode network structures
are different. Directly applying Veech’s species co-occurrence probabilistic model to adjacency matrices
in unimode food webs is problematic. The central critical problem is related to the number of free species
(or nodes/vertices) in the unimode network that can be the neighbors (have links to connect) of a focused
species or a focused pair of species. This number is typically less than the total number of species in real
food webs. That is, species are not independent from each other in unimode networks. For a simple
undirected unimode network without self-loops, based on the criterion whether there is a link between
two species for a focused pair, a correct probabilistic model is developed to accurately compute the
probability of observing some shared neighbors for a pair of species in the network. Numerical simulation
show that the node overlap calculated using the correct and original probabilistic models present
remarkable differences, especially when a unimode network is nested and contains generalists. In
summary, The correct probabilistic model should be used if ones want Strona and Veech (2015)’s node
segregation index to work for unimode food webs.

ã 2016 Elsevier B.V. All rights reserved.

1. Introduction

Based on Veech’s species co-occurrence probabilistic model
(Veech, 2013), a recent study (Strona and Veech, 2015) developed a
node segregation index for quantifying the structure in ecological
networks. They claimed that their model was suitable for both
bipartite and unimode networks. Although the model is appropri-
ate for plant-pollinator bipartite networks, it is actually not
applicable to unimode food web structures. Here a bipartite
network is a graph whose vertices can be divided into two
independent disjoint sets such that one vertex from one disjoint
set is allowed to have edges connecting other vertices in another
disjoint set (but no edges are allowed to link other vertices of the
same set). By contrast, a unimode network is a much free graph
without the above constraints imposed on the bipartite networks.

The studied objects in species-site matrices, bipartite networks
and unimode networks are different. The studied objects of the
original Veech’s co-occurrence probabilistic model are species and
sites, which are totally independent from each other. As such, the
species-site matrix could be rectangular and it is not necessary to
have equal column and row numbers. The adjacency matrix
characterizing the structure of bipartite networks is similar: plants
(or hosts) and pollinators (or parasites) are independent functional
groups and the row and column numbers can be different. Here, an

adjacency matrix is defined as a square matrix, the elements of
which indicate whether pairs of vertices are connected (i.e., have
an edge linking them together, typically recorded as 1) or not
(typically recorded as 0) in the network. However, the adjacency
matrix characterizing the structure of unimode food webs is quite
different: it contains the same set (or at least some) of species in
both rows and columns. That is, the adjacency matrix is typically
(or can be transformed back to) a square matrix. As such, a direct
application of Veech’s co-occurrence probabilistic model in
analyzing unimode network structure in Strona and Veech
(2015) deserves further investigation.

Later I will point out problems of directly applying the original
Veech’s co-occurrence probabilistic model to analyze undirected
unimode networks. The same problems are applied to directed
unimode food webs because they can be divided to indegree and
outdegree sub-networks (each is actually an undirected network).
Here, indegree and outdegree are defined as the number of head
endpoints and tail endpoints adjacent to a focused node
respectively. In graph theory, a simple undirected graph contains
no self-loops. That is, the diagonal elements of the adjacency
matrix must be always zero. For ecological food webs, self-loops
are possible for primary producers or species in other trophic
levels because they don’t need to feed on other species or have
interactions with conspecifics. However, even for non-simple
undirected networks with self-loops, the probability of observing
some common neighbors (here a neighbor is defined as a species
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that has a link or edge to connect the focused species) for a pair of
species is still different from the one computed using Veech’s co-
occurrence probabilistic model. Details are presented in the
following section.

2. Problems of directly applying Veech’s model

For the original Veech’s species co-occurrence probabilistic
model, the calculation formula for the co-occurrence probability of
a pair of species over n sites is given by (Strona and Veech, 2015;
Veech, 2013),

pVeechðkjn; d1; d2Þ ¼
n
k

� �
n � k
d1 � k

� �
n � d1
d2 � k

� �

n
d1

� �
n
d2

� � ð1Þ

where k is the number of shared sites for both species; d1 and d2 are
the number of sites where species 1 and 2 are observed to occur
respectively.

When this model is applied to networks, the definitions of
corresponding parameters are needed to change: n should
redefined as the total number of species in the network, d1 and
d2 become the number of neighbors that species 1 and 2 are
observed to have in the network, and k is the number of shared
common neighbors for both species.

Now I show the errors of directly applying the original Veech’s
probabilistic model as did by Strona and Veech (2015) in the
unimode network setting: in a simple undirected two-species food
web (n = 2), each species is assumed to have one neighbor
(d1 ¼ 1; d2 ¼ 1). Among possible configurations in this simplest
network (Fig. 1), for the cases without (Fig. 1A) and with the
allowance of self-loops (Fig. 1B), there are no common neighbors
for both species: the possible neighbors of species 1 are species
2 only for the case without self-loops (Fig. 1A) or species 2 and
itself for the case with self-loops (Fig. 1B). Analogously, the
possible neighbors of species 2 can be species 1 only for the case
without self-loops (Fig. 1A) or species 1 and itself for the case with
the allowance of self-loops (Fig. 1B). No matter whether self-loops
are allowed, the correct probability for observing some shared

neighbors (k > 0) for both species should be always 0 and the
probability of observing no neighbors (k ¼ 0) should be always 1.

However, if one directly applies the original Veech’s Eq. (1) as
did by Strona and Veech (2015), the probability that both species in
Fig. 1 share a common neighbor, given that both are observed to
have one neighbour, is pVeechðk ¼ 1jn ¼ 2; d1 ¼ 1; d2 ¼ 1Þ ¼ 0:5.
Moreover, the probability that both species share no neighbors
using Veech’s model ispVeechðk ¼ 0jn ¼ 2; d1 ¼ 1; d2 ¼ 1Þ ¼ 0:5.
These two probabilities are wrong, because it is not possible to
share a common neighbor in the two-species network (Fig. 1). The
analyses on the outdegree sub-network (the same to indegree sub-
network) of two-species directed network (self-loops can be
allowed or not allowed; Fig. 2) were identical: the probability that
both species in Fig. 2 share no neighbors or a common neighbor,
given that both are observed to have an outdegree, should be
always 0, not 0.5.

So why is Veech’s species co-occurrence model wrong? The key
reason is that two species of the focused pair are not independent
from each other and other species in the unimode network. Using
Fig. 1 as an example, to fulfill the requirement of n ¼ 2, d1 ¼ 1, and
d2 ¼ 1, if self-loops are not allowed, species 1 must have a link
connecting species 2. If self-loops are allowed, species 1 can be a
neighbor of itself (the last configuration in the lower right panel of
Fig. 1), but in this situation, species 2 is not allowed to connect
species 1 anymore (otherwise species 1 will have two neighbors:
itself and species 2, leading to d1 ¼ 2). In comparison, when
applying Veech’s model to a two species-two site matrix, under the
constraint of n ¼ 2, d1 ¼ 1, and d2 ¼ 1, four scenarios are possible
in which each species is allowed to occupy a site independently
(Fig. 3). The corresponding probability of sharing one site for both
species is 0.5, being equal to the value computed using Veech’s
Eq. (1).

Based on the above discussion, it is misleading to directly apply
Veech’s model (1) in food webs with complex trophic levels.
Veech’s model was originally developed for species-site matrices
in which species and sites are totally independent from each other.
It is appropriate to be applied to bipartite networks, but for
unimode food webs, the model becomes problematic. Therefore, It
is necessary to propose a correct probabilistic model for such a
situation and use it to replace Veech’s Eq. (1) if ones want the

Fig. 1. Possible structures for a two-species simple undirected food web (in which
each species has a neighbor: d1 ¼ 1; d2 ¼ 1) for the cases that self-loops are
inhibited (A) and permitted (B), respectively. k indicates the number of
shared neighbors. An undirected self-loop (denoted by a green curved line)
for a node in the last configuration (lower right panel) could be recognized
as a neighbor of itself.

Fig. 2. Possible structures for a two-species directed outdegree food web (in which
each species has an outdegree: d1 ¼ 1; d2 ¼ 1) for the cases that self-loops are
inhibited (A) and permitted (B), respectively. k indicates the number of
shared neighbors that both species have outward links to connect. A directed
self-loop (denoted by a green curved arrow) for a node (1 or 2) in the last
configuration (lower right panel) could be recognized as an outdegree for the
node (or an indegree for indegree network).
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