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1. Introduction

The dynamics of ecosystems are often complex and nonlinear.
This nonlinearity, originating from various feedbacks between the
different components of the ecosystem, may result in a multi-
stability of the ecosystem states. Changes in environmental
conditions and disturbances may drive the system from one
stable state to an alternative one. These critical transitions or
‘‘regime shifts’’ may be either abrupt or gradual (Bel et al., 2012).
Abrupt (critical) transitions are of great concern in many fields of
science due to the significant changes and often unexpected
outcomes they entail (Gandhi et al., 1998; Barnosky et al., 2012;
Yun et al., 2013; Rietkerk et al., 2011; Dakos et al., 2012; Kéfi et al.,
2014; Cline et al., 2014). The basic notion of abrupt critical
transitions stems from mean field models, describing the dynamics
of variables that are uniform across the system. The dynamics and
responses of spatially extended systems, however, are more
complicated (Rietkerk et al., 2011; Dakos et al., 2012; Kéfi et al.,

2014; Cline et al., 2014; Fernández and Fort, 2009; Fort, 2013). In
particular, the regime shifts between alternative stable states may
be gradual, abrupt or even a combination of the two, appearing as a
sequence of local regime shifts that can eventually lead to a
transition of the entire system to another stable state.

An excellent case study for studying regime shifts in spatially
extended systems can be found in dryland landscapes, where
fascinating vegetation patterns have been observed and studied
(Klausmeier, 1999; Von Hardenberg et al., 2001; Rietkerk et al.,
2002, 2004; Sherratt, 2005; Tlidi et al., 2008; Manor and Shnerb,
2008; Lejeune et al., 2002, 2004; HilleRisLambers et al., 2001; Gilad
et al., 2007, 2004; Borgogno et al., 2009). The vegetation patterns
are driven and maintained by positive feedbacks between local
vegetation growth and water transport toward the growth location
(Kinast et al., 2014; Meron, 2015). Several pattern-forming
feedbacks can be distinguished according to the water transport
mechanism: overland water flow, water conduction by laterally
extended root systems, soil water diffusion and fog advection
(Meron, 2015). Models describing the dynamics of dryland
vegetation differ in the pattern-forming feedbacks they capture,
but they all show the same universal sequence of basic vegetation
states along the rainfall gradient: uniform vegetation, gap patterns,
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A B S T R A C T

The response of dynamical systems to varying conditions and disturbances is a fundamental aspect of

their analysis. In spatially extended systems, particularly in pattern-forming systems, there are many

possible responses, including critical transitions, gradual transitions and locally confined responses.

Here, we use the context of vegetation dynamics in drylands in order to study the response of pattern-

forming ecosystems to oscillating precipitation and local disturbances. We focus on two precipitation

ranges, a bistability range of bare soil with a patterned vegetation state, and a bistability range of uniform

vegetation with a patterned vegetation state. In these ranges, there are many different stable states,

which allow for both abrupt and gradual transitions between the system states to occur. We find that

large amplitude oscillations of the precipitation rate can lead to a collapse of the vegetation in one range,

while in the other range, they result in the convergence to a patterned state with a preferred wavelength.

In addition, we show that a series of local disturbances results in the collapse of the vegetation in one

range, while it drives the system toward fluctuations around a finite average biomass in the other range.

Moreover, it is shown that under certain conditions, local disturbances can actually increase the overall

vegetation density. These significant differences in the system response are attributed to the existence of

localized states in one of the bistability ranges.
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striped patterns, spotted patterns and uniform bare soil. In
addition, a bistability range of each pair of consecutive basic
states may exist (Meron, 2012; Gowda et al., 2014). The
multiplicity of stable states, however, is much higher. Each type
of basic periodic pattern represents a family of patterns with
different wavelengths, e.g., a family of periodic striped patterns,
ranging from isolated stripes to dense stripes (van der Stelt et al.,
2013; Zelnik et al., 2013). In addition, any bistability range of basic
states may give rise to a multiplicity of hybrid states involving
domains of one state embedded within a larger domain of another
state (Zelnik et al., 2015). This multiplicity of stable states allows
for different types of state transitions and may consequently lead
to a wide array of responses to varying environmental conditions
or disturbances.

Ecosystem responses to changes in global conditions, such as
global climate change and climate variability, have attracted much
attention in various contexts (Walther et al., 2002; Marshall et al.,
2008; Parmesan, 2006; Walther, 2010; Anderson et al., 2012;
Maclean and Wilson, 2011; Cramer et al., 2001; Brown et al., 1997;
Melillo et al., 1993; Swetnam and Betancourt, 2010; Porporato
et al., 2004; Pounds et al., 1999; McGowan et al., 1998; Yizhaq
et al., 2014). The responses of ecosystems to disturbances, be they
natural, such as fires and bark beetles, or anthropogenic, such as
cattle grazing and clear cutting, have also been the subject of much
research (Turner et al., 2003; Goetz et al., 2007; Abdelnour, 2011;
White and Jentsch, 2001; McMillan et al., 2011). Several recent
model studies of dryland vegetation have addressed the response
of vegetation patterns to such influences, that is, to large-scale
environmental changes that encompass the whole ecosystem
(hereafter ‘‘global’’ changes) and to confined disturbances that
directly affect limited parts of the ecosystem. It was shown that in
the bistability range of bare soil and patterned vegetation, the
system can respond to global changes, such as a gradual
precipitation decrease, by changing the wavelength of the pattern
(Zelnik et al., 2013; van der Stelt et al., 2013; Sherratt, 2013;
Dagbovie and Sherratt, 2014; Siteur et al., 2014). The Busse balloon,
which presents the range of stable wavelengths versus the
bifurcation parameter, provides an insight into this type of
response (van der Stelt et al., 2013). When the bifurcation
parameter is adiabatically changed to values outside the stability
range of the current wavelength, a transition to another
wavelength within the Busse balloon takes place. The new
wavelength that is chosen by the system depends on the rate of
precipitation decrease and the noise level (Siteur et al., 2014). The
effect of system parameters varying periodically or intermittently
in time has also been studied (Guttal and Jayaprakash, 2007;
Kletter et al., 2009; Sheffer et al., 2011; Zhao and Wang, 2014;
Gandhi et al., 2015), but not in the context of global state
transitions or regime shifts.

To the best of our knowledge, a thorough examination of
transitions due to periodic forcing or local disturbances has not
been performed for models describing the dynamics of dryland
vegetation. Furthermore, all of the studies mentioned above have
focused on the bistability range of bare soil with patterned
vegetation, and have not looked at other bistability (or multi-
stability) ranges of the system. Here, we study the response of
pattern-forming systems to local disturbances and temporal
changes in the control parameter using a simple pattern-forming
model that describes vegetation dynamics in dryland ecosystems
and exhibits various patterns in different precipitation regimes.
We focus on the responses of the system in two precipitation
ranges in which there is a bistability between uniform and
patterned states. The responses of the system in the bistability
range of bare soil (uniform zero-biomass state) and patterns, and in
the bistability range of uniform vegetation (uniform nonzero-
biomass state) and patterns are studied and compared.

2. Model and methods

We studied a relatively simple model that describes the
spatio-temporal distributions of soil water and aboveground
biomass. However, the results are not limited to this specific
model, as detailed in the supplementary materials. The model is
a simplified version (Zelnik et al., 2013) of the model that was
introduced by Gilad et al. (2004, 2007). It applies to plants that
have confined root zones in the lateral directions and to
landscapes in which there is no infiltration contrast between
vegetated domains and bare-soil domains, e.g., soils without
significant crust. This simplified model captures a single
pattern-forming feedback, the ‘‘uptake-diffusion’’ feedback
(Kinast et al., 2014). This feedback represents the increased
water uptake rate by denser vegetation, thereby reducing the
soil water density in its neighborhood, and the fast transport of
soil water from domains with sparse vegetation (and therefore,
higher soil water density) toward domains with denser
vegetation (and therefore, lower soil water density). This
mechanism is relevant to dryland ecosystems with large soil
water diffusivity, such as landscapes with sandy soil, and plants
whose water uptake rate has a nonlinear dependence on the
biomass density. For example, the ecosystem of fairy circles in
Namibia has been shown to be a system where this mechanism
is prominent (Zelnik et al., 2015). Other pattern-forming
feedbacks exist, such as the infiltration feedback (Rietkerk
et al., 2011; Meron, 2012; Kinast et al., 2014), which occurs in
regions with a high infiltration contrast so that denser
vegetation patches act as water sinks, and the root-augmenta-
tion feedback, which describes the lateral growth of the plants’
root systems as biomass density grows (Gilad et al., 2007;
Meron, 2012). For the purpose of this study, the simplified
model is detailed enough to capture the distinct ranges of
bistability of bare-soil and patterned states and of uniform
vegetation and patterned states. The equations describing the
dynamics of the aboveground biomass (B) and the soil water (W)
areal densities are:

@T B ¼ LWBð1 þ EBÞ2 1� B

K

� �
�MB þ DBr2B ; (1)

@T W ¼ P�NW 1�R
B

K

� �
�GWBð1 þ EBÞ2 þ DWr2W : (2)

In Eq. (1), L is the biomass growth rate coefficient, E is a measure
for the root-to-shoot ratio, which characterizes the positive
feedback of the biomass on the soil water uptake rate, K is the
maximum standing biomass, M is the mortality rate, and DB

represents the rate of seed dispersal or clonal growth. In Eq. (2), P is
the precipitation rate, N is the evaporation rate, R is a dimensionless
factor representing a reduction of the evaporation rate due to
shading, G is the water uptake rate coefficient, and DW is the effective
soil water diffusivity in the lateral (X, Y) directions. The ‘‘uptake-
diffusion’’ feedback is characterized by the parameters E (charac-
terizing the growth of the water uptake rate with the biomass
density) and DW (the soil water diffusivity) (Kinast et al., 2014). A
dimensionless form of the model is obtained by rescaling the
state variables B, W and the space and time coordinates as follows:

b ¼ B

K
; w ¼WL

KG
; t ¼ MT; x ¼ X

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=DB

p
: (3)

In terms of these dimensionless quantities, the model reads:

@tb ¼ lwbð1 þ hbÞ2ð1�bÞ�b þ r2b ; (4)

@tw ¼ p�nwð1�rbÞ�lwbð1 þ hbÞ2 þ dwr2w : (5)
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