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1. Introduction

The classical theory of community ecology is based largely on
Lotka–Volterra competition (LVC) equations (Levins, 1968; Rose,
1987). Another central element of the classical framework is the
concept of resource utilization niche (MacArthur and Levins, 1967;
Schoener, 1989), which focuses on how species use consumable
resources. In fact niche theory (NT) was essentially a group of
theoretical models designed to address the problem of how many
and how similar coexisting species could be within a given
community (MacArthur and Levins, 1967; May and MacArthur,
1972). The relative utilization of resources along a resource
spectrum or niche axis can be described as a frequency
distribution. Species are thus characterized in terms of their
similarity in resource use or their niche overlap. The basic idea is
that there is a strong correspondence between the degree of niche
overlap between two species and the intensity of their competition
by shared resources (Morin, 2011). The combination of LVC and NT
resulted in the Lotka–Volterra niche competition theory (LVNCT)
(May, 1974; Pianka, 1976).

Just to fix ideas one may consider the niche axis as a gradient
that is related to the size of organisms (but we should bear in mind
that the niche concept is much general and does not necessarily
implies the size of organisms). Each species is numbered by an
index i and is represented by a normal distribution
Pi(j) = exp[�(j �mi)

2/(2si
2)] centered at mi, corresponding to its

mean size (i.e. its position on this niche axis j), and with a standard
deviation si, which measures the width of its niche. The
competition for finite resources among the n species can be
described by the Lotka–Volterra competition (LVC) equations:
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i ¼ 1; . . . ;n; (1)

where Ni is the population size of species i, ri is its maximum per
capita growth rate, Ki is the carrying capacity of species i (the
asymptotic population size it reaches when isolated from the other
competing species) and the coefficient aij is the coefficient of
competition between species i and j. As mentioned measure of the
intensity of this competition is provided by their niche overlap, i.e.
the overlapping between Pi(j) and Pj(j). Therefore the competition
coefficients aij can be computed by the MacArthur–Levins niche
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A B S T R A C T

Lotka–Volterra niche competition theory (LVNCT) is based on Lotka–Volterra competition equations

with competition coefficients between pairs of species determined by the intensity of their niche overlap

though the MacArthur–Levins niche overlap formula. Here I study analytically and numerically the

predictions of LVNCT concerning total abundance and biodiversity, measured by the Shannon

equitability index. Firstly, a set of simplifying assumptions that render the LVNCT amenable of analytical

treatment are considered. In particular I derive an approximated formula for the total abundance, as the

inverse of the mean value of the interspecific competition coefficients, which works pretty well both for

the transient and steady regime and for a wide range of the typical niche width s. Secondly, I analyze, by

means of simulations, the effect of relaxing the above simplifying assumptions when considering more

realistic conditions. It turns out that the approximated formula for the total abundance is quite robust

and its potential implications for management are discussed. I also analyze the predicted relationship

between community productivity and diversity.
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overlap (MLNO) formula (MacArthur and Levins, 1967):

ai j ¼
R1
�1 PiðjÞP jðjÞdjR1
�1 P2

i ðjÞdj
(2)

The LVNCT resulting from (1) and (2) can be used as a predictive
tool for the total abundance and biodiversity, two central metrics
of community ecology (Berlow, 1999; Abrams, 2001; Morin, 2011),
assuming the distribution of niches in resource space is known.
Another important question is regarding the interrelation between
total abundance and biodiversity. This relationship, besides being
intimately connected with a recent debate among ecologists
focused on mechanisms by which species diversity might affect net
primary productivity (Loreau and Hector (2001)), is of paramount
interest in more applied fields. For example, in agriculture where
benefits of multi species mixtures include overyielding, i.e.
production in mixtures that exceeds expectations based on
monoculture yields (Trenbath, 1974). LVNCT can also serve as a
baseline for analyzing more general mechanistic theories, taking
into account other interactions than just mutual competition, to
assess the effects on total abundance and biodiversity when
including interspecific mutualism, facilitation or parasitism. For
instance the effects of including a small dose of positive
cooperative interactions among different competing populations
in viral ecosystems were studied using LVNCT as a basis model
(Arbiza et al., 2010).

Here I study, analytically and numerically, the predictions of
LVNCT concerning total abundance and biodiversity (measured by
the Shannon equitability index). In particular I focus on the
dependence of these two quantities on the competition matrix a
which, in turn, depends on the typical niche width s. I start in
Section 2 by reviewing a series of simplifying assumptions that
render the LVNCT amenable of analytical treatment and then I
obtain analytical expressions for the total abundance and
biodiversity, both for the transient and steady regime. In Section
3 I analyze, by means of simulations, the effect of relaxing the
above simplifying assumptions and considering more realistic
conditions. Predictions concerning the classical problem of the
relationship between diversity and total abundance and produc-
tivity are also discussed Section 3.1. Section 4 is devoted to
conclusions.

2. Method and results

2.1. The fully simplified model: analytical results on biodiversity and

total abundance

It is possible to obtain analytic expressions for species relative
abundances, in terms of the dominant eigenvector of a, provided
we consider a series of simplifications (Fort et al., 2009):

� S1. All species have the same per capita growth rate which we
take equal to 1: ri = 1 8i.
� S2. All species have the same carrying capacity: Ki = K 8i.
� S3. All species have the same niche width: si = s 8i.
� S4. To avoid border effects, the niche is defined as circular, i.e.

periodic boundary conditions (PBC) are imposed. This is done by
just taking the smallest of jmi �mjjand 1 � jmi �mjj as the
distance between the niche centers.

Conditions S1 to S4 define the fully simplified model (FSM
thereafter). S1 to S3 are neutral assumptions (i.e. assume
functional equivalence between species) and thus the fate of a
species depends just on its position on the niche axis.

Under simplifying conditions S1 and S2 the system of Eq. (1)
reduces to

dxi

dt
¼ xi 1�

Xn

j¼1

ai jx j
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A i ¼ 1; . . . ;n; (3)

where xi = Ni/K. Conditions S3 to S4 in turn allow to write the
competition coefficients aij as:

ai j ¼ e
�
ðjmi �m jj

�
Þ

2

4s2 ; (4)

where mi �m j
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�

¼minf mi �m j
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the circularity of the niche axis.
From (3) and (4) it is possible to predict the number of surviving

species for asymptotic times, n1, as a function of s (Fort et al., 2009,
2010). For example, for s = 0.1, 0.15 and 0.2 n1 becomes,
respectively, equal to six, four and two species.

As a measure of the total abundance, X, I will use the sum of
species abundance densities normalized by their carrying capaci-
ties, and as measure of biodiversity the Shannon’s equitability index

H (or normalized entropy). X and H are given respectively by

X ¼
Xn

i¼1

Ni

Ki
¼
Xn

i¼1

xi; (5a)

H ¼ �
Xn

i¼1

xi

X
ln

xi

X

� �
=lnðnÞ: (5b)

The possible values of H range from zero (when there is just one
species) to 1 (when all the n species are equally represented).

The curves of the total abundance and the Shannon equitability
as a function of time, X(t) and H(t) respectively, can be obtained by
numerical integration of (3). As initial condition for the variables xi

I take species uniformly distributed along the niche axis, i.e. mi = i/n
(=1, 2, n). In Fort et al. (2010) it was shown that no important
differences are observed between the uniform and random
distribution on the niche axis. Each xi is a random number
between 0 and xmax � 1 chosen from a uniform distribution
(xmax = 1 would correspond to a maximum abundance equal to the
carrying capacity, and varying xmax from 0.01 to 1 does not
introduce dramatic changes). Fig. 1 shows results for s = 0.15. We
can see that X(t) exhibits a sigmoidal behavior while H(t) is its
mirror symmetric curve. Three different temporal scales are
apparent for a wide set of initial conditions.1 For a very short time t̃

(typically t̃ ¼ 5 to 10) X suffers a drastic variation quickly
converging to a value X̃ and thereafter it exhibits a plateau. H,
in turn, starts from a value close to its maximum, H = 1, and does
not vary appreciably. At an intermediate time scale, ti, the paces of
change for both X and H increase. Finally, at a large asymptotic time
scale, t1, X and H reach their equilibrium values X1 and
H1. Remarkably, the relative variation of X with t is much smaller
than the relative variation of H with t. The above panels depict
snapshots of species abundances vs. niche position m for four
different times. The initial condition at t = 0 consists in each xi

equal to a random number between 0 and 0.1 chosen from a
uniform distribution. For t = 250 a structure emerges and for
t = 1000 it transforms in a set of well defined lumps of species. For
t = 3000 we observe competitive exclusion: each lump is thinned
out to a single species. The particular positions of the surviving
species along the niche axis depend on the initial conditions.

1 That includes random abundances, slightly perturbed uniform abundances, etc.

However, for some particular initial conditions subtle transient additional structure

can occur, for example the splitting of the middle phase into two slightly different

values.
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