
Original Research Article

Remarks on the number of persistent states to a fragmented
predator–prey model system

Michel Langlais a,b,*
a Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France
b CNRS, IMB, UMR 5251, F-33400 Talence, France

1. Introduction

In this study we are interested in a specific heterogeneous
predator–prey model system posed on a fragmented spatial
domain made of N � 2 patches.

Our motivation lies in previous works on Toxoplasma gondii, cf.
Langlais et al. (2012), Lélu et al. (2013) and Lélu et al. (2010), wherein
the underlying predator–prey system exhibited quite complex and
interesting features having a strong impact on T. gondii persistence.

Heterogeneity comes from anthropization of the environment.
Typically patches represent urban or sub-urban areas, villages, farms
or fields. Prey are small rodents or birds with variable local
abundance, not dispersing at the predator scale. Predators are
domestic cats, Felis catus, having either abundant or scarce
sustainable local food supply not related to hunting within a
preferred patch they belong to. Predators disperse through the
spatial domain for chasing additional prey. This led us to introduce
well-fed and starving predator non mixing species as well as to

consider resident and traveling predators similarly to host popula-
tions for epidemic models in Arino and van den Driessche (2006).

A complex predator–prey model system made of a set of
ordinary differential equations (ODE) taking into account these
features was devised in Langlais et al. (2012). A few cases were
analyzed there for Lotka–Volterra functional responses to preda-
tion, with N = 3 patches and at most one starving predator species.
The goal was to shed some light on T. gondii spatial spread in such
an environment.

In the present work we come back to this complex predator–prey
model system assuming functional responses to predation can take
both usual parametric forms, Lotka–Volterra and Holling type II.

In order to have a more consistent model we modified prey and
well-fed predators dynamics. Instead of assuming conventional
logistic dynamics, v0 ¼ ðr � kvÞv, based on a growth rate, r, and a
carrying capacity, r/k, we chose modified dynamics, v0 ¼ L� av,
based on resources, L, and consumption, a.

In field, farm, village, suburban and urban areas available
resources for rodent populations are quite contrasted in abundance
and rely on the anthropization of the environment, cf. Deplazes et al.
(2004), Rodent population size depends on local available resources.
It becomes quite realistic to assume its subsequent dynamics is
governed by available resources (L) and per capita consumption
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A B S T R A C T

We consider a predator–prey model system for spatially distributed species over patches. Each predator

species has a unique preferred patch (shelter and reproduction site) and travel for chasing prey. Its

individuals are split into resident from the preferred patch and travelers. Further there is at most one

resident predator species per patch. Depending on the availability of local anthropized resources not

related to local prey on the preferred patch, one distinguishes between well-fed and starving predators.

We assume prey species do not disperse at the predator scale.

In this study we are interested in the number of persistent stationary states for the resulting ordinary

differential equations model system. There exists at most one persistent predator–prey stationary state

when there is exactly one starving resident predators per patch provided all functional responses to

predation are Lotka–Volterra like or when a single starving resident predators is available. Else multiple

persistent predator–prey stationary state are likely to exist. A specific emphasis is put on toy-model

systems with 2 or 3 patches. Slow–fast dynamical methodology is also used for locally asymptotically

stable purposes.

Numerical experiments suggest that several scalings may govern the dynamics at stabilization.
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(a) rather than by a growth rate and a carrying capacity. This is also
adequate for domestic cats sufficiently fed by their owners, well-fed
cats in the sequel. For insufficiently fed cats, starving cats in the
sequel, predation on a preferred patch or on nearby ones will supply
additional non anthropized resources.

This slightly simplifies the analysis while preserving its main
feature: dynamical complexity measured via the number of semi-
trivial and persistent stationary states increases with either the
choice of Holling type II functional responses to predation or the
number of patches.

This main feature is also related to a quite ancient set of
questions. First find sufficient conditions to ensure the existence of
a persistent state in a multi-species/multi-patch population
dynamics model system, cf. Gopalsamy (1984), Gopalsamy and
Ahlip (1983), Kaykobad (1985) and Kaykobad (1985). Second
analyze local or global stabilities, cf. Kuang and Takeuchi (1994), Li
and Shuai (2010) and references therein.

Given the size of our model system, even for N = 2, 3, stability
analysis of semi-trivial and persistent stationary states becomes
quite complicated to handle. Unfortunately the general methodol-
ogy devised in Li and Shuai (2010) does not seem to apply.

To go around this we got help from a general methodology
related to slow–fast dynamics allowing to reduce the size of the
system, cf. Auger et al. (2008), Auger et al. (2012), Nguyen-Ngoc
et al. (2012), Marvá et al. (2012) and references therein. Actually
not all processes occur at the same scale: predation and
demography for prey and predator species are much slower
processes than traveling for predators. This allowed us to give local
asymptotic stability (LAS) results for semi-trivial stationary states,
unfortunately not for persistent ones. Global asymptotic stability
(GAS) results are mostly open problems.

The main concern of this study remains the number of
persistent stationary states. From our model well-fed predators
have independent dynamics and do not pose any problem,
complexity coming both from starving predator species and
functional responses to predation.

For N � 2 patches the simplest case arises when there is exactly
one starving resident predator species per patch, all functional
responses to predation being of Lotka–Volterra type: one gets 0 or
1 persistent stationary state.

Else multiplicity of persistent stationary state is likely to occur
for a suitable parameter data set as soon as one considers a system
made of either 2 � Nmax < N starving resident predator species,
regardless functional responses to predation, or 2 � Nmax � N

starving resident predator species with at least one functional
responses to predation being of Holling type II.

Our work is organized as follows. In Section 2 we derive our
model system. Main assumptions, notations and definitions used
in this study are listed Section 3. In Section 4 we give a summary of
our main results. Section 5 is dedicated to generic results
independent of the number N of patches. In Sections 6 and 7 we
analyze the case of Lotka–Volterra functional responses to
predation for 2 or 3 patches. Section 8 is dedicated to 2 patches
and at least one functional responses to predation being of Holling
type II. In Section 9 we discuss our main results and offer some
perspectives of development.

2. A dedicated predator–prey model system

Our fragmented spatial domain is made of N � 2 patches,
ðPnÞ1�n�N .

One assumes a single (aggregated) prey species per patch Pn

whose density, Vn, follows a logistic-like dynamic in a predator free
environment

V 0n ¼ L
v
n � av

nVn; av
n >0; L

v
n >0 (2.1)

yielding a carrying capacity ðLv
n=av

nÞ. Prey species do not migrate
between patches.

On a given patch, Pn, several predator species may be found

resident predator species, whose individuals spend most of their
life span there: Pn is a shelter for all its individuals and a site for
species reproduction. Resident predators prey on local prey in
patch Pn and travel to chase prey from patch P j while

reproduction occurs only in this preferred patch Pn;
temporary predator species, whose individuals belong to a
resident species from patch P‘ traveling at a rate c‘‘n to patch Pn

for a short time span and coming back at a rate c‘n‘ to its
preferred patch P‘ thereafter.

A predator species can only be a resident species in one patch.
One assumes at most one resident predator species per patch, Nmax

patches hosting a resident predator species, 1 � Nmax � N. Unn is
the density of resident predators from patch Pn currently in patch
Pn, while Unj is the density of resident predators from patch Pn

visiting patch P j.

For n = 1, � � � , Nmax predator species ðUnjÞ1� j�N
is termed a

well-fed predator species, provided an abundant anthropized
food supply not related to chasing prey, L

u
n�0, is available in

the preferred patch Pn;
starving predator species, when a reduced food supply not
related to chasing prey is available in the preferred patch Pn,
L

u
n�0.

Let p, 0 � p � Nmax, be the number of well-fed predator species,
labelled from n = 1 to p when p > 0, so that q = Nmax � p is the
number of starving predator species, labelled from n = p + 1 to Nmax

when p < Nmax.
In absence of dispersal and prey on patch Pn a well-fed resident

predator density Unn follows a logistic-like dynamic, predation
having a negligible impact on its food supply, while a starving
resident predator density will experience an exponential decay.
Temporary predator species, Unj, have an additional mortality rate,
au

nj, while visiting patch P j.

On each patch Pn resident and temporary predators,
ðU‘nÞ1�‘�Nmax

, chase local prey, Vn. Functional responses to

predation, p‘n, of U‘n read,

p‘nðVnÞ ¼
e‘n Vn

1þ h‘n e‘n Vn
; e‘n�0; h‘n�0; (2.2)

‘=1, � � � , Nmax, n = 1, � � � , N. Accordingly e‘n p‘n(Vn) is the numerical

response to predation with ðe‘n�0Þ1�‘�Nmax ;1�n�N the conversion

rate of the biomass of captured and eaten prey into a birth rate for
predator species. A Lotka–Volterra functional response to preda-
tion corresponds to a h‘n = 0 while a positive h‘n provides a Holling
type II functional response to predation.

A predator–prey model system with a set of up to
(N � Nmax + N) ordinary differential equations can be derived.
For predator species ðUnjÞ1�n�N

it reads

V 0j ¼ L
v
j � av

j V j �
X

1�‘�Nmax

p‘ jðV jÞU‘ j; j ¼ 1; � � � ;N; (2.3)

U0nn ¼ L
u
n þ

X
1� j�N

enj pnjðV jÞUnj � au
nn Unn �

X
1� j�N; j 6¼n

cn
nj Unn

þ
X

1� j�N; j 6¼n

cn
jn Unj; (2.4)

U0nj ¼ �au
nj Unj � cn

jn Unj þ cn
nj Unn; j ¼ 1; � � � ;N; j 6¼n: (2.5)
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