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This paper presents a novel framework for monitoring fish sounds based on acoustic analysis of noisy big ocean
data. The proposed method involves multiresolution acoustic features (MRAF) extraction and RPCA (robust
principal component analysis) based feature selection for monitoring of natural fish sounds produced in situ by
the plainfin midshipman (Porichthys notatus); here, we investigate this fish's grunts, growls and groans. Both
local and contextual information are exploited byMRAF, while sparse components of the MRAF matrix obtained
throughRPCA is found to bemore robust to overlapping low-frequency spectral contents amongdifferent classes.
The simulation results obtained from real-recorded ocean data reveal the advantages of the proposed scheme for
monitoring underwater soundscapes and determining a variety of fish sounds in natural marine habitats.
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1. Introduction

Soundscapes offer information about our surroundings and environ-
ments, and include natural and man-made sounds (Pijanowski et al.,
2011). They can describe the biological communities that reside within,
including information on species interactions (Fine and Thorson, 2008),
communication (Tricas et al., 2006), and even abundance (Rountree
et al., 2006). Underwater soundscapes and the interactions of organisms
within them, including howmarine life benefits from and exploits them
are complex, and to date, poorly understood (Fay, 2009; Nedelec et al.,
2015).

Contrary to previous assumptions, we now know that marine
soundscapes are full of natural noise (Slabbekoorn et al., 2010),
including ‘biophony’, noise produced by animals (Krause, 2012). Fish
in particular produce a lot of noise, usually through contractingmuscles
or stridulation (rubbing of bones together; Kasumyan, 2008), and can
make up the “natural acoustic background” heard underwater
(Kasumyan, 2009; Slabbekoorn et al., 2010). Determiningwhich sounds
are created by which fish can be a daunting task as the number of fish
that produce sounds is at least 800, and likely much more (Rountree
et al., 2006; Kasumyan, 2008; Krause, 2012). When it comes to
biological sounds, establishing those produced by marine life is a
difficult process, as each sound must first be detected, identified, and
then categorized (e.g. type), thus assuming a basic knowledge of each
organism and its behavior in its natural environment. Such a process
is generally done manually, which proves difficult, costly, and very
time-intensive (Rountree et al., 2006).

Having an automatic classification system whereby fish sounds are
categorized by species and vocalization type would allow large acoustic
datasets to be analyzed over short timescales, andwould yield informa-
tion onmarine soundscape composition and condition. For example, by
identifying and classifying fish sounds, fish location (including
spawning sites), migration patterns, abundance and other parameters
could all be determined (Rountree et al., 2006).

The plainfin midshipman (Porichthys notatus) is a highly vocal
species of fish found along the Pacific northeast coast. Also known as
the ‘singing fish’, it is recognized for producing unique and varied
sounds (Bass et al., 1999; Cullis-Suzuki, 2015). The ‘hum’ is by far its
best understood call: associated with reproduction, the hum is emitted
by alpha males in search of females who will come and mate (Brantley
and Bass, 1994; Sisneros, 2009). The midshipman's other calls — the
grunt, grunt train, growl and groan — are in comparison not well
established. Unraveling the cause of vocalization emission and
determining how the calls relate to temporal, spatial, and frequency
features, would yield important insights into fish behavior and acoustic
communication. For example, if growls were emitted as agonistic
responses to predators, an increase in growls might signify a high
abundance of predators. Further, these findings would influence our
understanding of noise and how it might impact marine life and ocean
soundscapes. We investigate the plainfin midshipman fish in this
study, as it has proven to be an exceptional species for studies on wild
fish communication (McIver et al., 2014; Cullis-Suzuki, 2016).

Other studies on other organisms have implemented a variety of
automatic detection schemes for use on acoustic datasets. For example,
an identification scheme is proposed in Chesmore and Ohya (2004) for
Orthoptera species using temporal features based on shape of
waveform and duration between consecutive zero-crossings followed
by a multilayer perceptron (MLP) classifier. In Mellinger et al. (2011),
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a complex detection method is presented for humpback whales by
frequency contour tracing and by multiple parameter optimization. An
unsupervised classification method for bird song syllables has been
proposed in Hansson-Sandsten (2015), based on singular vectors of
multitaper spectrogram and the similarity measures of two syllables
using pairs of singular vectors. And finally, the study Starkhammar
and Hansson-Sandsten (2015) presents an evaluation of different
time-frequency representations for target detection applied to broad-
band echolocation signals of dolphins.

Herewe focus on designing a robust acoustic analysis framework for
big ocean data using robust principal component analysis (RPCA) and
multiresolution acoustic features (MRAF) to monitor fish sounds. PCA
uses the singular value decomposition (SVD) to find low rank represen-
tation of the data, while the robust version of PCA (RPCA) identifies a
low rank representation, random noise, and a set of outliers by repeat-
edly calculating the SVD and applying “thresholds” to the singular
values and error for each iteration (Guyon et al., 2012a; Bouwmans
and Zahzah, 2016). The RPCA plays a significant role in tackling the
key challenges involvedwith big data (Perez et al., 2015) byminimizing
false alarms, reducing seasonal variability and processing the data that
are not normally distributed. We further extract acoustic features
using multiple window sizes (both 1D and 2D) from the same input
data instead of the fixed window size (e.g. 20 ms). When multiple
window sizes are used, multiple sets of feature vectors are derived for
the same signal thereby increasing the number of examples. When
features are extracted with multiple window sizes, the variations
among the feature vectors are considerably increased, which will lead
to better acoustic models. This multiresolution acoustic feature
extraction technique can then be successfully used for building an
efficient underwater monitoring system that can detect a variety of
fish vocalizations automatically, thus providing information on the
type and extent of communication taking place in underwater
soundscapes.

Themain contributions of this paper can be stated as: 1)We address
the challenging task of fish soundmonitoring from single channel audio
when different fish vocalizations are overlapping. 2) The proposed
MRAF are constructed based on both local and contextual information.
3) The proposed RPCA based feature selection is taken into account to
reduce the non-distinctive features. 4) The advantage of the proposed
two-stage scheme is that it provides a high performance for the input
noisy raw data.

2. Method

The monitoring scheme we present is outlined in two steps: Firstly,
we partition the raw hydrophone recordings (which contain fish
sounds) into a number of segments. Secondly, we construct, select and
use a set of multiresolution features as input to the MSVM classifier to
track the types of fish vocalizations.

2.1. Data preprocessing

Manual spectrogramanalysis involved examining the first 5minutes
of each hour in a day (i.e., 5 min × 24 h) for each of the three dates in-
cluded in the analysis. The type and length offish calls for each introduc-
tory 5-m segments were determined in Audacity (see Cullis-Suzuki,
2015; Sattar et al., 2016 for further details).

2.2. Multiresolution acoustic features

We have introduced a new multiresolution acoustic features
(MRAF), which encodes the multi-resolution energy distributions
in the time-frequency plan based on the cochleagram representation
of an input signal. We incorporate a number of cochleagrams at dif-
ferent resolutions to design the MRAF features set. The cochleagram
with high resolution captures the local information, while the other

low resolution cochleagrams capture the contextual information at
different scales. To compute the cochleagram, we first pass an input
signal to a gammatone filter bank, where the impulse response of a
particular gammatone filter has an impulse response given by

h tð Þ ¼ t η−1ð Þe−2πB f c t cos 2π f ctð Þ t≥0ð Þ
¼ 0 t≤0ð Þ ð1Þ

where parameter η is the order of the filter, fc denotes the center
frequency while Bfc refers to the bandwidth given fc. The gammatone
filter function is used in models of the auditory periphery representing
critical-band filters where the center frequencies fc are uniformly
spaced on the equivalent rectangular bandwidth (ERB) scale. The
relation between Bfc and fc is given by

Bf c ¼ 1:019� ERB f cð Þ ¼ 1:019� 24:7 4:37� f c=1000þ 1ð Þ: ð2Þ

Then each response signal from the gammatone filter bank is
divided into 20 ms frames with a 10 ms frame shift; the cochleagram
is obtained by calculating the energy of each time frame at each
frequency channel. Each T-F unit in the cochleagram contains only
local information, which may not be sufficient to accommodate the
diversity in the ocean data. To compensate for this, the MRAF feature
set provides contextual information by including the energy distribu-
tion in the neighborhood of each T-F unit. The steps for computing
MRAF are as follows.

(1) Given input ocean data, compute the first 64-channel
cochleagram (CB1) followed by a log operation applied to each
T-F unit.

(2) Similarly, the second cochleagram (CB2) is computed with the
frame length of 200 ms and frame shift of 10 ms.

(3) The third cochleagram (CB3) is derived by averaging CB1 using a
rectangular window of size (5 × 5) including 5 frequency
channels and 5 time frames centered at a given T-F unit. If the
window goes beyond the given cochleagram, the outside units
take the value of zero (i.e. zero padding).

(4) The fourth cochleagram CB4 is computed in a similar way to
CB3, except that a rectangular window of size (11 × 11) is
used.

(5) Concatenate CB1–CB4 to generate a feature matrix F and
integrate it along the time frame to obtain a set of MRAF
features of dimension (256 × 1).

2.3. Feature selection

The feature selection is motivated by the idea of decomposition of
feature matrix into low-rank and sparse matrices based on the alternat-
ing direction method (ADM) (Yuan and Yang, 2009; Guyon et al.,
2012b). It leads to feature selection via RPCA (robust principal compo-
nent analysis) based on convex optimization. The RPCA is basically a
matrix decomposition problem where it is assumed that the input
feature matrix F is composed by a low-rank matrix, L, and a sparse
matrix, S. Then the recovery of L and S matrix can be accomplished by
solving the following convex programming problem:

minS;L γjjSjjl1 þ jjLjj� subject to Sþ L ¼ F ð3Þ

where || ⋅ ||l1 is the l1 norm, || ⋅ ||⁎ is the nuclear norm defined by the
sum of all singular values, and γ is a positive regularization
parameter.

The convex optimization problem in Eq. (3) can be solved by the
ADM approach (Kontogiorgis and Meyer, 1998), which is easily
implementable, computationally efficient using SVD (singular value
decomposition) (Larsen, n.d.), and based on augmented Lagrangian
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