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Process-oriented ecologicalmodels are frequently used for predicting potential impacts of global changes such as
climate and land-cover changes, which can be useful for policy making. It is critical but challenging to automat-
ically derive optimal parameter values at different scales, especially at regional scale, and validate themodel per-
formance. In this study, we developed an automatic calibration (auto-calibration) function for a well-established
biogeochemical model—the General Ensemble Biogeochemical Modeling System (GEMS)-Erosion Deposition
Carbon Model (EDCM)—using data assimilation technique: the Shuffled Complex Evolution algorithm and a
model-inversion R package—Flexible Modeling Environment (FME). The new functionality can support multi-
parameter andmulti-objective auto-calibration of EDCM at the both pixel and regional levels.We also developed
a post-processing procedure for GEMS to provide options to save the pixel-based or aggregated county-land
cover specific parameter values for subsequent simulations. In our case study, we successfully applied the up-
dated model (EDCM-Auto) for a single crop pixel with a corn–wheat rotation and a large ecological region
(Level II)—Central USA Plains. The evaluation results indicate that EDCM-Auto is applicable at multiple scales
and is capable to handle land cover changes (e.g., crop rotations). The model also performs well in capturing
the spatial pattern of grain yield production for crops and net primary production (NPP) for other ecosystems
across the region, which is a good example for implementing calibration and validation of ecological models
with readily available survey data (grain yield) and remote sensing data (NPP) at regional and national levels.
The developed platform for auto-calibration can be readily expanded to incorporate other model inversion
algorithms and potential R packages, and also be applied to other ecological models.

Published by Elsevier B.V.

1. Introduction

Mathematical models, especially process-oriented models, are
widely used to support decision making in environmental disciplines
because they can characterize and predict landscape processes and con-
sequences (Liu et al., 2008b). Themajority of ecologicalmodels are built
for research purposes, but increasingly also for forecasting andmanage-
ment purposes (Marta-Almeida et al., 2012; Rykiel, 1996). These
numerical models, however, usually contain parameters which may
be hard to measure (Janssen and Heuberger, 1995; Luo et al., 2001;

Van Oijen et al., 2005; Wu and Liu, 2012a; Yuan et al., 2012) or cannot
be determined using field measurement because of scaling effects (dis-
crepancies between measurement and modeling scales) (Beven, 2001;
Juston et al., 2010). Hence, model calibration is required to estimate
and adjust model parameters and constants to improve the agreement
between simulations and the corresponding observations (Janssen and
Heuberger, 1995; Larssen et al., 2007; Pereira et al., 2008; Rykiel, 1996;
Zhang et al., 2009a). This procedure is fundamental and critical for eco-
logical model applications (Janssen and Heuberger, 1995; Larssen et al.,
2007; Mazzotti and Vinci, 2010; Rykiel, 1996).

Conventional manual calibration can incorporate the knowledge
and experience of modelers through analysis of results and common
sense reasoning when searching new values for each parameter
(Pereira et al., 2008). However, it is subjective, time-consuming, and
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challenging when calibrating more than one parameter and satisfying
multiple constraints (i.e., multi-objective calibration) for biogeochemical
models (Liu et al., 2008b). Further, it could be impractical to obtain the
globally optimal set of parameter values for non-linear models using a
manual approachwhich is labor intensive and associatedwith subjective
experience. Additionally, the size of a study area can dramatically in-
crease the difficulty to derive spatially-explicit parameter values
(i.e., the spatial variability of a parameter) (Liu et al., 2008b).

With the development of computer technology, auto-calibration
was proposed and attracted increasing attention over the past decades
(Gupta et al., 1999; Vrugt et al., 2003; Zhang et al., 2009b). Simple tech-
niques such as controlled random search or linear regression methods
can be useful for some simple data-oriented models. However, because
these techniques are based on systematic and exhaustive generation of
parameter arrays and thus require a huge number of model iterations,
they are inapplicable of deriving the globally optimal values for non-
linear, process-oriented models which are usually computationally-
intensive. From literature, there are a number of global optimization
techniques available, such as Shuffled Complex Evolution (SCE) (Duan
et al., 1992), Artificial Neural Network (ANN), Genetic Algorithm (GA)
(Goldberg, 1989; Holland, 1975),Multi-objective Evolutionary Algorithm
(MOEA), Kalman Filter, and the Flexible Modeling Environment (FME)
(Soetaert and Petzoldt, 2010), which was developed and implemented
using the General Public License (GPL) R software (R Development Core
Team, 2009). For example, Wu and Liu (2012a) developed a universal
modeling framework to incorporate the R-based FME into a Fortran-
based model such as the Soil and Water Assessment Tool (R-SWAT-
FME) to conduct parameter optimization, sensitivity, and uncertainty
analysis. Although this framework was tested for SWAT, it can be readily
applied to other environmental models. Ricciuto et al. (2008) performed
a Bayesian calibration of a simple carbon cycle model at global-scale
using the Monte Carlo Markov Chain (MCMC) technique. For the well-
established biogeochemical model CENTURY, Liu et al. (2008b) adopted
a nonlinear inversion technique—PEST (PEST, 2003)—tomatch the simu-
lated net primary production (NPP) with Moderate-Resolution Imaging
Spectroradiometer (MODIS) NPP. Chen et al. (2008) used another
technique—smoothed ensemble Kalman Filter (SEnKF)—to achieve the
model-data assimilation for the same model.

In this study, the primary objective is to develop automatic calibra-
tion (auto-calibration) for the General Ensemble BiogeochemicalModel-
ing Systems-Erosion Deposition CarbonModel (GEMS-EDCM) (Liu et al.,
2003b, 2004), at multiple (especially the regional) scales, using the
widely-used SCE algorithm and the R package FME. The updated EDCM
is named EDCM-Auto, which can be implemented to derive the optimal
parameter values for each individual pixel. GEMS, which originally man-
ages the spatial data and prepares input for EDCM, ismodified to provide
observation data for the auto-calibration procedure and include options
to either save these derived pixel-based parameters by EDCM-Auto or
further derive the county-land cover specific parameter values through
aggregation (i.e., parameter post-process) before model application.
The developed EDCM-Auto can accommodate multi-parameter and
multi-objective (i.e., satisfying multiple model output variables such as
grain yield, NPP, and biomass) calibration and deal with land-cover
changes. In a case study, however,we adopted themost sensitive param-
eter (i.e., maximumpotential primary productivity) to demonstrate how
the EDCM-Auto works for model auto-calibration due to the availability
of observation data (grain yield for croplands and MODIS NPP for other
land covers) at the regional scale.

2. Materials and methods

2.1. GEMS-EDCM description

2.1.1. GEMS description
The GEMS was developed by the U. S. Geological Survey (USGS) to

provide spatially explicit biogeochemical simulations over large areas

via integrating well-established ecosystem biogeochemical models
and various spatial databases (Liu et al., 2004). GEMS is a new type of
land-use land-cover change (LULCC)-oriented, regional-level biogeo-
chemical simulation system assimilating spatially dynamic databases
such as climate, land cover, management, and disturbances, etc. GEMS
has two major components: Input/output database management and
multiple encapsulated ecosystemmodels. As an interface and platform,
GEMS framework assists users with getting standardized data into and
out of the biogeochemicalmodels that are staged on theGEMSplatform.
Fig. 1 shows the schematic diagram of the GEMS model.

The current GEMS has encapsulatedmultiple site-scale biogeochem-
ical models such as the CENTURY model (Parton et al., 1987, 1994), the
EDCM model (Liu et al., 2003b), and the spreadsheet or paint-by-
number model (PBN) (Liu et al., 2012a). Additional models can be
added into the GEMS framework and share common input data layers.
GEMS can drive these models simultaneously to perform ecosystem
dynamics simulation over time and space, and it has been successfully
used to simulate carbon dynamics (e.g., CO2 and CH4 fluxes and changes
of carbon pools) in vegetation and soil at various spatial scales and for
different regions (Dieye et al., 2012; Liu et al., 2008a, 2011; Tan et al.,
2005, 2009, 2010; Zhao et al., 2010a,b).

Technically, the GEMS framework has relatively few pre-requisites
that include HDF5 and netCDF4 libraries as well as the GNU XML
parser libraries. Individual models are linked into the framework at
compile time as standard C or C++ function calls. By using the control
file which defines the input and output variables and other settings
(e.g. the sampling rate, the size of themovingwidow, and the simulation
period), a user can invoke any of the models with a single executable.
The major function of GEMS can be described briefly as follows:

1) Reads various spatiotemporal database (climate, land cover, etc.)
with standardized NetCDF4 format into data arrays and an attribute
structure and pass them into a specific model library (e.g., EDCM
library) which is responsible for writing out the required input
files for a model (EDCM),

2) Drives a model (e.g., EDCM, CENTURY, and PBN) run with or without
data assimilation followed by opening a series of output netCDF4files
and provides a function to write data arrays to those output files,

3) Utilizes a “moving window” to break up requested model tins into
manageable sizes given hardware resources, yet in the end provides
output files that are continuous for the entire requested geographical
area.

4) Implements sampling approach to speed model simulations in
addition to conventional approach that supports wall-to-wall or
per-pixel only simulations. With the sampling approach, users can
choose different sampling densities to run GEMS tomeet their needs.

2.1.2. EDCM description
EDCM(Liu et al., 2003b) is amodified version of the CENTURYmodel

(version IV) (Parton et al., 1987, 1994). Although EDCM retains the basic
input and output file structures of CENTURY, many changes have been
made in input parameters and simulation algorithms of the underlying
biogeochemical processes. First, EDCM uses up to ten soil layers to sim-
ulate the soil organic carbon (SOC) dynamics in the whole soil profile,
instead of one single top-layer (20-cm) structure of CENTURY. In each
soil layer, EDCMcharacterizes the quantity and quality of SOC, following
the practice used by CENTURY for the top soil layer. This treatment re-
tains the proven applicability of CENTURY model for the topsoil layer
and provides consistency between the top layer and the deeper layers
in EDCM simulations. Second, EDCM can dynamically keep track of the
evolution of the soil profile and carbon storage as influenced by soil ero-
sion and deposition (Liu et al., 2003b), though CENTURY does not have
the capability of simulating SOC dynamics in depositional environ-
ments. Third, instead of using a simple bucket hydrological sub-model
of CENTURY, EDCM has improved the routine for simulating vertical
water fluxes and soil moisture content to enhance the prediction of
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