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a  b  s  t  r  a  c  t

Although  biogeographic  patterns  are  the  product  of complex  ecological  processes,  the  increasing  com-
plexity  of correlative  species  distribution  models  (SDMs)  is not  always  motivated  by ecological  theory,
but  by  model  fit.  The  validity  of model  projections,  such  as shifts  in  a species’  climatic  niche,  becomes
questionable  particularly  during  extrapolations,  such  as  for future  no-analog  climate  conditions.  To  exam-
ine the  effects  of model  complexity  on  SDM  predictive  performance,  we  fit  statistical  models  of varying
complexity  to  simulated  species  occurrence  data  arising  from  data-generating  processes  that  assume
differing  degrees  of distributional  symmetry  in  environmental  space,  interaction  effects,  and  coverage  in
climate space.  Mismatches  between  data-generating  processes  and  statistical  models  (i.e.,  different  func-
tional forms)  led  to  poor  predictive  performance  when  extrapolating  to  new  climate-space  and  greater
variation  in  extrapolated  predictions  for overly  complex  models.  In  contrast,  performance  issues  were
not  apparent  when  using  independent  evaluation  data  from  the  training  region.  These  results  draw  into
question  the  use  of  highly  flexible  models  for prediction  without  ecological  justification.

Published  by  Elsevier  B.V.

1. Introduction

Monumental increases in the availability of ecological data
and computing resources allows increasingly complex ecological
models to be leveraged for predicting changes in biogeography.
Increasing complexity in ecological models developed to repre-
sent species distributions in both geographic and environmental
space is supported by the fact that those same distributions depend
on a suite of processes associated with physiology (Buckley et al.,
2011), demography (Pagel and Schurr, 2011), dispersal (Elith and
Leathwick, 2009; Iverson et al., 2004), and biotic interactions
(Parmesan and Yohe, 2003; Vanderwel et al., 2013; Walther et al.,
2002). However, model complexity is sometimes motivated by
the maximization of predictive performance, not ecological theory,
as has been noted for correlative species distribution model-
ing (Austin, 2002, 2007). Correlative species distribution models
(SDMs) are commonly used to assess habitat suitability as it relates
to key environmental gradients (Elith and Leathwick, 2009) and
generate global change predictions at regional to continental scales,
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painting a portrait of extreme biogeographic change under most,
if not all, future scenarios of climate change (Parmesan and Yohe,
2003; Walther et al., 2002). While the SDMs do not generally model
ecological processes constraining species occurrences as mecha-
nistic approaches might (Ibáñez et al., 2006), the advent of virtual
species simulation as a method of testing key assumptions of
these models offers opportunities to assess model robustness and
appropriateness (Meynard et al., 2013; Zurell et al., 2010). Model
assessments exploring the impacts of failing to meet assumptions
on predictive performance are not only needed to guide ecolo-
gists in choosing SDMs, testing their reliability, and interpreting
their results (Aguirre-Gutierrez et al., 2013; Austin, 2007; Elith and
Graham, 2009; Jimenez-Valverde et al., 2008), but for any ecological
models used for prediction.

In part, the diversity of SDMs available for modeling reflects
differences in assumptions about how species respond to environ-
mental gradients. The prevalence of unimodal patterns of species
occurrences along environmental gradients is well-supported
(Austin, 2005; Gauch and Whittaker, 1972) and is assumed to
represent suitability declines as conditions depart from the opti-
mum  (Austin and Smith, 1989; Heikkinen and Mäkipää, 2010).
Asymmetric and symmetric unimodal patterns are both com-
mon  (Austin and Gaywood, 1994; Austin and Van Niel, 2011;
Boucher-Lalonde et al., 2012; Ellenberg, 1953), suggesting that
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both can be reasonable representations of reality. The degree of
symmetry is often interpreted as evidence of certain mechanisms
controlling species distributions in environmental space, such
as physiological constraints producing asymmetric distributions
(Austin and Gaywood, 1994; Austin and Smith, 1989).

An apparent asymmetry in a species distribution may  arise from
truncation in the climate-space (Normand et al., 2009). Given that
no-analog climates are likely to be common in the future (Williams
and Jackson, 2007), ecological models that perform well under con-
temporary conditions may  be unable to predict future changes.
For example, contemporary patterns of conifer budbreak dates in
western North America are negatively correlated with tempera-
tures (i.e., earlier budbreak in warmer regions), but budbreak under
future conditions may  be delayed as chilling requirements are no
longer met  (Harrington and Gould, 2015). Because there may  be no
contemporary analogs to some future climates, models sensitive
to truncation in the climate space will struggle in extrapolating to
future conditions.

Although not generally discussed in relation to species distribu-
tion modeling, interactions might project asymmetries from one
environmental gradient to another, as noted for 23% of European
tree species (Boucher-Lalonde et al., 2012). As a result, an asym-
metric species distribution might arise because an asymmetry or
truncation along one environmental gradient influences suitability
along the other gradient. Therefore, the source of observed asym-
metries in species distributions is not trivial and is not necessarily
easily accounted for in SDMs.

The source of complexity in species distributions, both envi-
ronmentally and geographically, is at the heart of the debate
concerning the complexity of SDMs. In recent years, SDMs increas-
ingly utilize highly flexible correlative statistical models capable of
accommodating a diverse suite of species distributional responses
to environmental gradients (Elith and Leathwick, 2009). Increasing
flexibility seems to improve model performance based on tradi-
tional cross-validation techniques (Santika and Hutchinson, 2009),
but compared to simple models such as the generalized linear
model (GLM), more flexible models such as the generalized additive
model (GAM), random forest (RF) models, maximum entropy (Max-
Ent) models, or boosted regression trees (BRT) may  not perform
well in terms of predicting into other regions or the future (Araujo
et al., 2005; Randin et al., 2006; Schibalski et al., 2014; Merow et al.,
2014). This dichotomy indicates that complex models may  be fitting
spurious patterns that are difficult to identify if evaluating model
performance using cross-validation within the same region used to
train the models; for instance, spatial autocorrelation is a concern
for cross-validation when predicting within the same region (Le
Rest et al., 2014) and also when predicting into novel climate space
(Crase et al., 2014). While species responses to environment may  be
highly conditional on local landscapes and communities, increased
model complexity may  be difficult to interpret or may  explain
random variation not related to any ecological processes (i.e., over-
fitting). Thus, our confidence in model predictions to novel climate
space is based on the ability of a model to reproduce the underlying
processes contributing to species distributions (Evans et al., 2013).

In this study, we examine the influence of process and model
complexity on ecological inference and prediction. Our objectives
were to (1) determine how model complexity impacted perfor-
mance when predicting species occurrence within a training region
as well as extrapolating to other regions and (2) to explore the
factors contributing the variation in performance, such as the
underlying process generating the data (including random and spa-
tial error), the model employed, and the sampling of data. We  used
a virtual species approach to simulate presence and absence data
(e.g.; Meynard and Quinn, 2007) based on four different underlying
climatic suitability processes, we fit SDMs of varying complex-
ity, and we evaluated model performance in terms of observed

species occurrence and underlying suitability processes within a
single region and across regions (i.e., independent validation and
transferability, respectively).

2. Materials and methods

2.1. Study area and climate data

In this study, we focus on the dry domain of the United States
because it encompasses a large, climatically complex region in
which simulation of species distributions could produce complex
patterns (Fig. 1). The dry domain the of U.S. encompasses ecosys-
tems ranging from the eastern slope of the Sierra Nevada and Cas-
cade Mountains to the western Great Plains, from lowland deserts
to montane forests to alpine meadows (Bailey, 1995). We  divided
the region into sub-regions based on state boundaries so that we
could fit models to data from a single region (Northern Rocky Moun-
tains [NR]) and test transferability of these models to other regions
representing different climate-spaces (Southern Rocky Mountains
[SR], Southwest [SW], and the Great Plains [GP]). All regions over-
lap climatically, but none share similar climatic extents (Fig. 1b–e),
ensuring that species distribution models developed in NR would
need to extrapolate to predict species geographic and environmen-
tal distributions in SR, SW,  and GP. Therefore, these regions provide
an appropriate case for testing model transferability.

Climate data were extracted for a grid of sample locations, with
points located uniformly at 1/32◦ intervals, resulting in 12,583 total
sample points. To ensure climatic realism, we extracted 30-year cli-
mate normal (1981–2010) from the 30 arc-second (approximately
800 m)  PRISM data set (PRISM Climate Group, 2012) and calculated
log winter (November to March) precipitation (dm) and minimum
annual temperature (◦C). We  chose these variables because (1)
snowpack and extreme winter temperatures are often incorporated
into plant species distribution models in the region (e.g., Rehfeldt
et al., 2006), (2) the correlation between these variables was inter-
mediate (Pearson correlations r = 0.22, −0.22, −0.58, and 0.63 for
NR, SR, SW,  and GP, respectively), and (3) these variables resulted
in somewhat divergent climate-space among the four sub-regions
(Fig. 1b–e). The coverage of the climate space for different regions
was assessed by examining the similarity of univariate and mul-
tivariate climate within the training region (NR) to the projection
regions (SR, SW,  and GP) as measured with the NT1 and NT2 indices
defined by Mesgaran et al. (2014). Both in terms of univariate and
multivariate climate space, large portions of the projection regions
were climatically similar to the training region, but that greatest
dissimilarity between training and projection regions occurred in
the southern portions of the study region (Fig. 2).

2.2. Simulation experiment design

To examine the influences of the species occurrence data gener-
ating process on model prediction, we employed a virtual ecologist
approach (Meynard et al., 2013; Meynard and Quinn, 2007; Zurell
et al., 2010) wherein we designed a simulation experiment that
allowed us to vary the data generating process, the models used
to describe species environmental distributions, and the climate-
space provided to the models for statistical inference. While there
are many SDM approaches reported on in the literature, in this
research, we focus on GLM, GAM, RF, MaxEnt, and BRT models with
and without interactions to represent a gradient in model complex-
ity because (1) many ecologists and species distribution modelers
are familiar with them, (2) computation with model fitting is rel-
atively simple and fast, and (3) the main objective was to test the
effect of model complexity and not to evaluate specific models. As
a result, the current study uses a relatively small series of models
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