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a b s t r a c t

The equation describing a power–law relationship between the mean and variance of population abun-
dance in space or time is known as Taylor’s power law (TPL), initially observed in samples of insects.
Factors determining the TPL exponent are of particular concern to ecologists because the observations
of the exponent usually range 1–2. Recent studies have suggested that TPL is caused solely by statistical
artifacts rather than biological processes, with the corresponding statistical models lacking linkages to
explicit population demography. In this study, we used two special forms of the Neyman–Scott cluster
point process to study the effect of offspring dispersal distance from the parents on the TPL exponent.
Results showed that dispersal distance could largely affect the TPL exponent. The response curve of TPL
exponent to dispersal distance is similar to the shape of the left-skewed gamma distribution function
multiplied by a constant which can permit its maximum value to exceed 1. That means, short-distance
dispersals could produce large TPL exponents relative to the whole response curve. However, the TPL
exponent will decline in the case that the dispersal is extremely short or long. To better understand the
function of the exponent of TPL on fitness, we attempted to link plant seed dispersal ability to the TPL
exponent, and we discussed the trade-off between investing in propagation energy and in performance
energy of plants. Dispersal overlap of offspring each other to an extent can cause a large TPL exponent,
providing maximum fitness in a population. A novel theoretical frame was proposed to explain the role
of spatial TPL relationships in affecting the fitness of plants.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Taylor’s power law (TPL) describes the relationship between
the mean (M) and variance (V) of population abundance in both
space and time (Taylor, 1961; Anderson et al., 1982). There is a
great deal of empirical and theoretical evidence that demonstrates
a power–law relationship between these two variables:

V = aMb. (1)

where, a and b are constants. The value of b usually ranges from 1 to
2 (Taylor, 1961; Kilpatrick and Ives, 2003; Ballantyne and Kerkhoff,
2007). Several studies indicated that the TPL exponent could exceed
2 (Yamamura, 1990; Fronczak and Fronczak, 2010). This law has
been accepted since the 1960s. The previous studies have proposed
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many biological mechanisms that could explain TPL. For example,
Taylor and Taylor (1977) used an animal immigration model to
study the migratory effect on TPL. Anderson et al. (1982) revealed
TPL with simple population models under demographic and envi-
ronmental influences, and they emphasized that the precise form of
TPL might be determined by the relative magnitude of the various
rate processes that govern the dynamics of population change and
by the degree of spatial and temporal heterogeneity. Perry (1988,
1994) used biological relevant population dynamics models to ana-
lyze TPL. Kilpatrick and Ives (2003) used a stochastic logistic model
to study the effect of interspecific competition on the TPL expo-
nent. They found a severe degree of competition among species
produced an exponent of less than two. Ballantyne and Kerkhoff
(2007) showed that correlation among individual reproduction is
related to different values of TPL exponent. Recent studies showed
that TPL might be a general statistical pattern rather than being
driven by a biological mechanism (Giometto et al., 2015; Xiao et al.,
2015). Cohen and Xu (2015) demonstrated that the estimate of
the TPL exponent is proportional to the skewness of a single fre-
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quency distribution where observations are randomly sampled in
blocks. Xiao et al. (2015) proposed that the TPL exponent might still
contain ecological information. However, previous studies have
failed in presenting an explicit biological factor that determines
the exponent of spatial TPL. The work from Cohen’s group provides
very detailed relationships between statistical variables and the
mean–variance scaling patterns in TPL, but the statistical variables
such as the skewness of the distribution (Cohen and Xu, 2015) and
the transition probability (Giometto et al., 2015) lack clear biolog-
ical meanings. In addition, these stochastic multiplicative models
are not spatially explicit and cannot account for spatial pattern. The
usefulness of spatial point processes for plants in studying TPL has
not been paid much attention before (Picard and Favier, 2011). We
attempted to analyze the influence of dispersal distance of seeds
on the TPL exponent using two spatial point process models with
clear biological parameters.

2. Materials and methods

2.1. General formulae of mean and variance in spatial point
processes

The intensity function and pair correlation function are the
basic concepts of spatial point process theories (Diggle, 2014). The
first-order properties of a spatial point process are defined by an
intensity function as:

�(x) = lim
|dx|→0

{
E[N(dx)]

|dx|
}

, (2)

where �(x) denotes the intensity function at location x on the
two-dimensional Cartesian coordinate system. E(·) represents the
expectation, and dx denotes an infinitesimal region in the vicinity of
x, while |dx| denotes the area of dx. N denotes the number of points
in an infinitesimal region. The second-order intensity function is
defined as:

�2(x, y) = lim
|dx|, |dy| → 0

{
E[N(dx)N(dy)]

|dx||dy|
}

. (3)

Based on the first- and second-order intensity functions, the pair
correlation function g is defined as:

g(x, y) = �2(x, y)
�(x) × �(y)

. (4)

where �(y) denotes the intensity function at location y.
Suppose B denote any bounded area on the plane, i.e., B ∈ �2,

and let N(B) denotes the number of points in B. The mean and vari-
ance of N(B) can be calculated using the following formulae (Jalilian
et al., 2012):

E [N (B)] =
∫

B

�(x)dx (5)

and

Var[N(B)] =
∫

B

�(x)dx +
∫

B

∫
B

�(x)�(y)[g(x, y) − 1]dxdy. (6)

The above mean–variance formulae are general for all cases
of two-dimensional point processes. For a complete spatial ran-
dom point process (Diggle, 2014), the intensity function �(x) is a
constant, g(x, y) = 1, and variance equals mean. According to the
definition of the pair correlation function, it should be a positive
real number. The case of g > 1 (or g < 1) corresponds to the possi-
ble attraction (or repulsion) between points (Jalilian et al., 2012). If
g < 1, variance can be less than mean.

2.2. Two special forms of the Neyman–Scott cluster point process

The Neyman–Scott cluster point process can be used to describe
many plants’ spatial distributions. In a given region, parent points
are realizations of homogeneous or inhomogeneous Poisson point
processes. Each parent point generates a cluster of offspring points
based on a specific distributional pattern (e.g., Gaussian distri-
bution). The locations of offspring points form a realization of
the Neyman–Scott cluster point process. Here, we are concerned
with two special forms of the Neyman–Scott cluster point pro-
cess: the Matérn and Thomas (cluster point) processes. Both point
processes have a ‘scale’ parameter that can be used to reflect the
dispersal distance from a parent point. There are other forms of
the Neyman–Scott cluster point process (e.g., Tanaka et al., 2008),
but for convenience we will only focus on the Matérn and Thomas
processes.

Suppose that the intensity of parent points is �. For a Matérn
cluster process, the locations of offspring points are independent
and uniformly distributed inside a circle of radius R centered on
each parent point. The theoretical pair correlation function of a
Matérn process is as follows (Baddeley et al., 2015):

g(r) = 1 + 1
4�R�r

× h
(

r

2R

)
, (7)

where

h(z) =

⎧⎨
⎩

16
�

[
z × arccos(z) − z2

√
1 − z2

]
if z ≤ 1;

0 if z > 1.

(8)

Here, r represents the distance of offspring points from a parent
point. Assume that the number of offspring points of each parent
point is a Poisson random variable with mean �. The theoretical
intensity of a Matérn process is:

� = ��. (9)

For a Thomas cluster process, the offspring points of one par-
ent are independent and isotropically normally distributed around
the parent point with standard deviation �. The theoretical pair
correlation function of a Thomas process is as follows:

g(r) = 1 + 1
4���2

exp

(
− r2

4�2

)
. (10)

The theoretical intensity of a Thomas process is similar to that of
a Matérn process: � = ��. Below, we mainly examine the effect of
parameter R in the Matérn process and parameter � in the Thomas
process on the exponent b of TPL. Both of these parameters can
reflect the dispersal distance of parent point, e.g., the dispersal
distance of seeds in herbs, the spread distance of underground
rhizomes of pygmy bamboos.

2.3. Simulation

In a simulated unit square (i.e., [0,1] × [0,1]), we used the Dirich-
let tessellation (Baddeley et al., 2015; Fig. 1) to divide the unit
square into 50 tiles with different areas. We calculated the theo-
retical mean and variance for every tile based on Eqs. (5) and (6).
We can then fit these data of variance versus mean to test the TPL.
By supposing the intensity of parent points to be a constant �, we
then set different values of R in a Matérn process and different val-
ues of � in a Thomas process to generate different realizations (i.e.,
planar points) in the unit square. For a given R or �, we can obtain
50 data point pairs of variance versus mean from 50 tiles in every
simulation. We fitted the data to obtain the estimates of a and b of
TPL. For the given range of R or �, we obtained different estimates
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