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a  b  s  t  r  a  c  t

In  this  report,  I incorporate  local  speciation  into  neutral  theory  of  biodiversity  to  predict  species  abun-
dance  distribution  patterns.  By  fitting  the  local-speciation  model  to the  abundance  data  of  tree  species  in
Barro Colorado  Island  of  Panama,  the  results  showed  that the  new  model  performed  better  than  the  orig-
inal  neutral  model  without  local  speciation.  Moreover,  the  estimated  local  speciation  rate  (v′ = 0.0107)
was  found  to  be ten-fold  larger  than  the estimated  background  speciation  rate (v =  0.0011), indicating
that  local  speciation  should  not  be ignored  in  neutral  theory.  Given  that species  across  different  local
habitats  and  landscapes  may  present  heterogeneous  speciation  rates,  it is valuable  to  incorporate  local
speciation  into  neutral  theory  to study  spatiotemporal  patterns  of  ecological  assemblages.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Since Stephen Hubbell published his book (Hubbell, 2001), neu-
tral theory of biodiversity has represented an important advance
for modern community ecology. Neutral theory has been proposed
to describe spatiotemporal patterns of ecological communities
(Alonso and McKane, 2004) and has been successfully applied to
describe species abundance distribution (SAD) patterns. In addi-
tion to numerical simulation originally employed in Hubbell (2001),
analytical calculation formulas have been extensively developed
over the past decade (Volkov et al., 2003, 2007; Etienne and Alonso,
2005; Etienne, 2007).

Three biogeographical processes, namely speciation, immigra-
tion and extinction, are major factors shaping insular diversity
patterns (Whittaker et al., 2008). However, their relative impor-
tance is not equivalent. In most cases, immigration and extinction
are the dominant mechanisms stemmed from island biogeography
theory (MacArthur and Wilson, 1967; Chen, 2015a). By contrast,
speciation is often assumed to be small and slow (Heaney, 2000).
However, some other works found that local speciation can con-
tribute substantially to island diversity (Losos, 2010). In particular,
on large islands, ecologists believed that radiation or phylogenetic
diversification could increase island diversity (Heaney, 2000;
Losos and Schluter, 2000). This is because the opening of ecological
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opportunities (or empty niches) in these islands (Algar and Losos,
2011). Based on these empirical observations, local speciation
has been integrated in island biogeography models (Chen and He,
2009; Chen, 2015a).

However, in the context of neutral theory of biodiversity, the
role of local speciation is unclear. In addition to drift, background
speciation, immigration and extinction (Volkov et al., 2003; Chen,
2015b), Can local speciation contribute to the prediction and inter-
pretation of SAD patterns in empirical data sets? To address this
question, in the present study, I explicitly incorporate local spe-
ciation into the sampling formulas for neutral theory and test the
fitting power of new sampling formulas on empirical SADs by com-
paring it to the original formula without the involvement of local
speciation.

2. Methods and materials

2.1. A neutral model with local speciation

In this section, I deduce the sampling formula for the neutral
model with local speciation. The model has an origin from the orig-
inal neutral model, the corresponding stochastic master equation
of which is governed by the following birth-death process:

dPn

dt
= An−1Pn−1 + Cn+1Pn+1 − (An + Cn) Pn (1)

where Pn denotes the probability of a species at time t having abun-
dance n. The coefficients An and Cn are the birth and death rates
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for the probability when the species has the abundance n. For the
proposed local-speciation neutral model in the present study, they
are calculated as follows,⎧⎪⎨
⎪⎩

An = J  − n

J

n

J − 1

(
1 − m − �′)+ J − n

J
mω

Cn = n

J
�′ + (J − n)n

J(J − 1)
(1 − m − �′) + n

J
m(1 − ω)

(2)

Without further notation hereafter, J denotes the local commu-
nity size. m is the regional immigration rate of species from the
metacommunity. ω is the relative abundance of species in the meta-
community. The new parameter presented in Eq. (2) is the local
speciation rate v′, which reflects the influence of local speciation
on the stochastic birth-death process of the neutral model. When
there is no local speciation (i.e., v′ = 0), the transition probabilities
in Eq. (2) become identical to those presented in previous studies
(Vallade and Houchmandzadeh, 2003; Volkov et al., 2003).

Here I further set the following quantities,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r = J − 1
1 − m − �′ m

s = J  − 1
1 − m − �′ �′

� = J − 1
1 − m − �′ mω

(3a)

where r here represents the strength of regional dispersal, while s
represents the influence of local speciation. Their relation is given
by s/r = �′/m. This ratio thus depends on the relative strength of local
speciation and regional immigration. Based on these definitions, it
can be further seen that,{

� = ωr

s  = r
v′

m

(3b)

Then, by using the quantities in Eqs. ((2), (3a) and (3b)), Eq. (1)
at equilibrium can be solved as,

Pn(ω) =
(

J

n

)
(rω)n(s + r(1 − ω))J−n

(s + r)J
(4)

This is the typical form of local sampling formula estab-
lished previously (Vallade and Houchmandzadeh, 2003; Alonso and
McKane, 2004; Etienne and Alonso, 2005). Eq. (4) uses the notation
for Stirling number as (a)n = a(a + 1), . . .,  (a + n − 1). So, the expected
species with abundance n in the local sample is given by,

E
[
Sn|�, r, s, J

]
=

1∫
0

(
J

n

)
(rω)n(s + r(1 − ω))J−n

(s + r)J
× �
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ω
dω

(5)

where � denotes the fundamental biodiversity number (Hubbell,
2001; Alonso and McKane, 2004; Volkov et al., 2003). The back-
ground speciation rate v mentioned above is integrated in this
parameter as � = 2JMv (Hubbell, 2001; Alonso and McKane, 2004).
Here JM is the metacommunity size.

Alternatively, one can use an approximate sampling equation
presented in Volkov et al. (2003, 2007), in which the probability of
a species with abundance n is given by,

P(n) =
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n

)
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(6)

where � (•) denotes the Gamma  function as � (t) =
∫ ∞

0
xt−1e−xdx.

The second equality in (6) used the quantities presented in Eq. (3b).
The expected value of species with abundance n in the commu-

nity is then calculated approximately as,

E
[
Sn|�, r, s, J

]

= �

1∫
0

(
J

n

)
� (n + rω)
� (1 + rω)

�  (J + r − rω + s − n)
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� (s + J + r)

e−ω�dω

(7)

When s = 0 (thus �′ = 0, no local speciation), the above Eq. (7)
is identical to the formula presented in Volkov et al. (2003). The
integral in this equation can be done numerically so to compute
the expected number of species with abundance n.

Maximum likelihood method for estimating parameters
To fit the model to empirical data sets, I employ the maximum

likelihood model used in the previous studies (Alonso and McKane,
2004; Etienne and Alonso, 2005) as,

L{Data|�, r, s, J} = p(1)S1 , . . ., p(a)Sa

p(n) =
E
[
Sn|�, r, s, J

]
∑J

i=1E
[
Si|�, r, s, J

]
−Log(L{Data|�, r, s, J}) = −

a∑
i=1

Si Log(p(i))

(8)

here p(n) is the normalized probability of a species with n indi-
viduals. E[Sn|�, r, s, J] is the expected number of species with n
individuals calculated from Eq. (7). a is the maximum abundance
found in the local community. Sk (k = 1, 2, . . .,  a) is the observed
species number with abundance k in the empirical data set.

2.2. An empirical test

Now it is ready to test the local speciation model and compare it
to the original neutral model (i.e., the model without local specia-
tion by setting s = 0). Tree abundance data for Barro Colorado Island
(BCI) permanent forest plots in Panama (http://ctfs.arnarb.harvard.
edu/webatlas/datasets/bci/) were used as an empirical test as pre-
vious studies (Alonso and McKane, 2004; Etienne, 2007). Because
it is time-consuming to compute Stirling number in Eq. (5), I esti-
mated the parameters (�, r, and s) using the maximum likelihood
model derived from Eq. (7). The integral was  calculated numerically
using the standard trapezoidal rule.

For comparing alternative models and choosing a better model
to characterize SAD pattern of BCI tree species, I utilize the modified
Akaike information criterion (AICc) (Akaike, 1974; Haining, 2003;
Chen, 2013) accounted for small samples as follows,

AICc = −2(m − 1)Log(L) + 2k
m − 1

(m − 1) − k − 1
(9)

where Log(L) is the log-transformed likelihood value as in Eq. (8), m
is the number of data points used for maximizing the likelihood as
above and k is the number of parameters presented in the model.

3. Results

The maximum likelihood estimation of parameters could be
best achieved at � = 47.6179, r = 1879.94, and s = 252.401 (Table 1).
This local speciation model had AICc = 2612.126. In contrast, for
the model without local speciation (by mandatorily setting s = 0
in Eq. (7)), the fitted parameters became � = 46.625 and r = 2288.86,
respectively (Table 1). These estimated values were very similar to
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