
Theoretical Computer Science 602 (2015) 125–131

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Pancyclicity and bipancyclicity of folded hypercubes with both 

vertex and edge faults

Che-Nan Kuo

Department of Animation and Game Design, TOKO University, No. 51, Sec. 2, University Road, Pu-Tzu City, ChiaYi County 61363, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 May 2015
Received in revised form 24 July 2015
Accepted 20 August 2015
Available online 28 August 2015
Communicated by S.-y. Hsieh

Keywords:
Interconnection networks
Folded hypercubes
Pancyclicity
Bipancyclicity
Fault-tolerant
Fault-free

A graph is said to be pancyclic if it contains cycles of every length from its girth to its order 
inclusive; and a bipartite graph is said to be bipancyclic if it contains cycles of every even 
length from its girth to its order. The pancyclicity or the bipancyclicity of a given network 
is an important factor in determining whether the network’s topology can simulate cycles 
of various lengths. An n-dimensional folded hypercube F Q n is a well-known variation of 
an n-dimensional hypercube Q n which can be constructed from Q n by adding an edge 
to every pair of vertices with complementary addresses. F Q n for any odd n is known to 
bipartite. In this paper, let F F v and F Fe denote the sets of faulty vertices and faulty edges 
in F Q n . Then, we consider the pancyclicity and bipancyclicity properties in F Q n − F F v −
F Fe , as follows:

1. For n ≥ 3, F Q n − F F v − F Fe contains a fault-free cycle of every even length from 4 to 
2n − 2 · |F F v |, where |F F v | + |F Fe| ≤ n − 1;

2. For n ≥ 4 is even, F Q n − F F v − F Fe contains a fault-free cycle of every odd length 
from n + 1 to 2n − 2 · |F F v | − 1, where |F F v | + |F Fe| ≤ n − 1.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Choosing an appropriate interconnection network (network for short) is an important integral part of designing parallel 
processing and distributed systems. Many network topologies have been proposed [2,15,26]. Among the proposed network 
topologies, the hypercube [3] is a well-known network model. The hypercube has several excellent properties such as re-
cursive structure, regularity, symmetry, small diameter, short mean internode distance, low degree, and much smaller edge 
complexity, which are very important for designing massively parallel or distributed systems [18]. Numerous variants of the 
hypercube have been proposed in the literature [5,6,23]. One variant that has been the focus of a great deal of research is 
the folded hypercube, which can be constructed from a hypercube by adding an edge to every pair of vertices that are the 
farthest apart, i.e., two vertices with complementary addresses. The folded hypercube has been shown to be able to improve 
the system’s performance over a regular hypercube in many measurements, such as diameter, fault diameter, connectivity, 
and so on [5,24].

An important feature of an interconnection network is its ability to efficiently simulate algorithms designed for other 
architectures. Such a simulation can be formulated as network embedding. An embedding of a guest network G into a host 
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network H is defined as a one-to-one mapping f from the vertex set of G to the vertex set of H . Under f , an edge in G
corresponds to a path in H [18]. Cycles (rings), the most fundamental networks for parallel and distributed computation, are 
suitable for designing simple algorithms with low communication costs. Numerous efficient algorithms designed on rings 
for solving various algebraic problems and graph problems can be found in [1,18].

Since faults may occur when a network is put into use, it is practically meaningful and important to consider faulty 
networks. Previously, the problem of fault-tolerant cycle embedding on an n-dimensional folded hypercube F Q n has been 
studied in [4,7,9,10,13,14,16,17,20,24,28]. Let F F v and F Fe denote the sets of faulty vertices and faulty edges in F Q n . 
Hsieh [10] showed that F Q n − F F v − F Fe contains a fault-free cycle of length at least 2n − 2 · |F F v |, where n ≥ 3. In this 
paper, we extend Hsieh’s [10] result to obtain two further properties, which consider both vertex and edge faults, as follows:

1. For n ≥ 3, F Q n − F F v − F Fe contains a fault-free cycle of every even length from 4 to 2n − 2 · |F F v |, where |F F v | +
|F Fe| ≤ n − 1;

2. For n ≥ 4 is even, F Q n − F F v − F Fe contains a fault-free cycle of every odd length from n + 1 to 2n − 2 · |F F v | − 1, 
where |F F v | + |F Fe| ≤ n − 1.

Throughout this paper, a number of terms—network and graph, node and vertex, edge and link—are used interchangeably. 
The remainder of this paper is organized as follows: in Section 2, we provide some necessary definitions and notations. 
Sections 3 and 4 present our main results of embedding cycles with even lengths and cycles with odd lengths, respectively. 
Some concluding remarks are given in Section 5.

2. Preliminaries

A graph G = (V , E) is an ordered pair in which V is a finite set and E is a subset of {(u, v)|(u, v) is an unordered pair of 
V }. We say that V is the vertex set and E is the edge set. We also use V (G) and E(G) to denote the vertex set and the edge 
set of G , respectively. Two vertices u and v are adjacent if (u, v) ∈ E . A graph G = (V 0 ∪ V 1, E) is bipartite if V 0 ∩ V 1 = ∅
and E ⊆ {(x, y)|x ∈ V 0 and y ∈ V 1}. A path P [v0, vk] = 〈v0, v1, . . . , vk〉 is a sequence of distinct vertices in which any two 
consecutive vertices are adjacent. We call v0 and vk the end-vertices of the path. In addition, a path may contain a subpath, 
denoted as 〈v0, v1, . . . , vi, P [vi, v j], v j, v j+1, . . . , vk〉, where P [vi, v j] = 〈vi, vi+1, . . . , v j−1, v j〉. The length of a path is the 
number of edges on the path. A path 〈v0, v1, . . . , vk〉 forms a cycle if v0 = vk and v0, v1, . . . , vk−1 are distinct. A vertex is 
fault-free if it is not faulty. An edge is fault-free if the two end-vertices and the edge between them are not faulty. Vertex u
is a fault-free adjacent vertex of v if u and (u, v) are not faulty. A path (cycle) is fault-free if it contains no faulty edges and 
faulty vertices.

Usually when the Hamiltonicity of a graph G is concerned, it is investigated whether G is Hamiltonian or Hamiltonian-
connected. A cycle (respectively, path) in G is called a Hamiltonian cycle (respectively, Hamiltonian path) if it contains every 
vertex of G exactly once. A graph G is Hamiltonian if it contains a Hamiltonian cycle, and Hamiltonian-connected if there ex-
ists a Hamiltonian path between every two distinct vertices of G . A bipartite graph G is Hamiltonian-laceable if there exists 
a Hamiltonian path between any two vertices from different partite sets. A Hamiltonian-laceable graph G = (V 0 ∪ V 1, E) is 
strong [8] if there is a simple path of length |V 0| +|V 1| −2 between any two vertices of the same partite set. A Hamiltonian-
laceable graph G = (V 0 ∪ V 1, E) is hyper-Hamiltonian laceable [19] if for any vertex v ∈ V i , i ∈ {0, 1}, there is a Hamiltonian 
path of G − v1 between any two vertices of V 1−i . A graph G is pancyclic if it contains cycles of every length from its 
girth (the length of a shortest cycle) to |V (G)| inclusive. Since a bipartite graph does not contain odd cycles, the concept 
of bipancyclicity is proposed in [22]. A graph G is bipancyclic if it contains cycles of every even length from the girth of 
G to |V (G)| if |V (G)| is even, or to |V (G)| − 1 if |V (G)| is odd. For graph-theoretic terminologies and notations are not 
mentioned here, readers may refer to [25].

An n-dimensional hypercube Q n (n-cube for short) can be represented as an undirected graph such that V (Q n) consists 
of 2n vertices which are labeled as binary strings of length n from 00 . . . 0

︸ ︷︷ ︸

n

to 11 . . . 1
︸ ︷︷ ︸

n

. Each edge e = (u, v) ∈ E(Q n) connects 

two vertices u and v if and only if u and v differ in exactly one bit of their labels, i.e., u = bnbn−1 . . .bk . . .b1 and v =
bnbn−1 . . . b̄k . . .b1, where b̄k is the one’s complement of bk , i.e., b̄k = 1 − i iff bk = i for i ∈ {0, 1}. We call that e is an edge of 
dimension k. Clearly, each vertex connects to exactly n other vertices. In addition, there are 2n−1 edges in each dimension 
and |E(Q n)| = n · 2n−1. Fig. 1 shows a 2-dimensional hypercube Q 2 and a 3-dimensional hypercube Q 3.

Let x = xnxn−1 . . . x1 and y = yn yn−1 . . . y1 be two n-bit binary strings; and let y = x(k) , where 1 ≤ k ≤ n, if yk = 1 −xk and 
yi = xi for all i �= k and 1 ≤ i ≤ n. In addition, let y = x̄ if yi = 1 −xi for all 1 ≤ i ≤ n. The Hamming distance dH (x, y) between 
two vertices x and y is the number of different bits in the corresponding strings of the vertices. The Hamming weight hw(x)
of x is the number of i’s such that xi = 1. Note that Q n is a bipartite graph with two partite sets {x| hw(x) is odd} and 
{x| hw(x) is even}. Let dQ n (x, y) be the distance between two vertices x and y in graph Q n . Clearly, dQ n (x, y) = dH (x, y).

An n-dimensional folded hypercube F Q n can be constructed from an n-cube by adding an edge (also called complementary 
edge) to every pair of vertices that are the farthest apart, i.e., for a vertex whose address is b = bnbn−1 . . .b1, it now has 

1 The graph obtained by deleting v from G .
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