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An integer array y = y[1..n] is said to be feasible if and only if y[1] = n and, for every 
i ∈ 2..n, i ≤ i + y[i] ≤ n + 1. A string is said to be indeterminate if and only if at least one 
of its elements is a subset of cardinality greater than one of a given alphabet �; otherwise 
it is said to be regular. A feasible array y is said to be regular if and only if it is the prefix 
array of some regular string. We show using a graph model that every feasible array of 
integers is a prefix array of some (indeterminate or regular) string, and for regular strings 
corresponding to y, we use the model to provide a lower bound on the alphabet size. 
We show further that there is a 1–1 correspondence between labelled simple graphs and 
indeterminate strings, and we show how to determine the minimum alphabet size σ of an 
indeterminate string x based on its associated graph Gx . Thus, in this sense, indeterminate 
strings are a more natural object of combinatorial interest than the strings on elements of 
� that have traditionally been studied.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Pattern matching in strings — that is, locating all the occurrences of a given pattern in a given text — has been studied for 
at least half a century. A major breakthrough was the realization that preprocessing the pattern would allow the problem 
to be solved significantly faster. Perhaps the first form of preprocessing was proposed in the seminal paper by Morris & 
Pratt [24], which computed the border array of the pattern; that is, an array β , of the same length as the pattern p, such 
that β[i] is the length of the longest proper prefix of p[1..i] that is also a suffix.

In recent years, a generalization of the classical string pattern matching problem has been introduced, where either 
the pattern or the text, or both, contain sets of symbols at each position, as opposed to a single symbol per position in 
regular strings. These types of sequences are known as indeterminate strings and were first introduced in a famous paper 
by Fischer & Paterson [12], then later studied by Abrahamson [1]. In the last ten years or so, much work has been done by 
Blanchet-Sadri and her associates (for example, [4]) on “strings with holes” — that is, strings on an alphabet � augmented 
by a single letter, a “hole” or “wildcard”, that matches all other symbols in �. The monograph [3] summarizes much of the 
pioneering work in this area. For indeterminate strings in their full generality, the third and fourth authors of this paper 

* Corresponding author at: Algorithms Research Group, Department of Computing & Software, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
E-mail addresses: christodoulakis.manolis@ucy.ac.cy (M. Christodoulakis), ryanpj@mcmaster.ca (P.J. Ryan), smyth@mcmaster.ca (W.F. Smyth), 

wangs@ca.ibm.com (S. Wang).
URL: http://www.cas.mcmaster.ca/cas/research/algorithms.htm (W.F. Smyth).

1 The work of the third author was supported in part by Grant No. 8180 from the Natural Sciences and Engineering Research Council of Canada.

http://dx.doi.org/10.1016/j.tcs.2015.06.056
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.06.056
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:christodoulakis.manolis@ucy.ac.cy
mailto:ryanpj@mcmaster.ca
mailto:smyth@mcmaster.ca
mailto:wangs@ca.ibm.com
http://www.cas.mcmaster.ca/cas/research/algorithms.htm
http://dx.doi.org/10.1016/j.tcs.2015.06.056
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.06.056&domain=pdf


M. Christodoulakis et al. / Theoretical Computer Science 600 (2015) 34–48 35

have collaborated in several papers, especially in the contexts of pattern-matching [16–18,29] and extensions to periodicity 
[27,28].

In the search for a preprocessing approach to speed up the pattern matching problem on indeterminate strings, it soon 
became clear that the border array is of limited use. For regular strings x, the border array has the desirable property 
that any border of a border of x is also a border of x — thus β implicitly specifies every border of every prefix of x. For 
indeterminate x, however, due to the nontransitivity of the match operation, this is not true [29,28]. Hence border arrays 
cannot be used to speed up pattern matching on indeterminate strings. However, it turns out to be possible to make use of 
another data structure, the prefix array π , in which π [i] is the length of the longest substring beginning at position i of x
that matches a prefix of x.

Apparently the first algorithm for computing the prefix array occurred as a routine in the repetitions algorithm of Main 
& Lorentz [22]; see also [26, pp. 340–347]. A slightly improved algorithm is given in [21, Section 8.4], and two algorithms 
for computing a “compressed” prefix array are described in [27]. A comprehensive treatment of prefix array construction 
algorithms can be found in [5]. As noted above, for regular strings the border array and the prefix array are equivalent: it 
is claimed in [9,10], and demonstrated in detail in [5], that there are �(n)-time algorithms to compute one from the other. 
On the other hand, as shown in [27], for indeterminate strings the prefix array actually allows all borders of every prefix 
to be specified, while the border array does not [16,19]. Thus the prefix array provides a more compact and more general 
mechanism for identifying borders, hence for describing periodicity, in indeterminate strings.

Ref. [27] describes an algorithm that computes the prefix array of any indeterminate string. In this paper we consider the 
“reverse engineering” problem of computing a string corresponding to a given “feasible” array y — that is, any array that 
could conceivably be a prefix array. The first reverse engineering problem was introduced in [13,14], where a linear-time 
algorithm was described to compute a lexicographically least string whose border array was a given integer array — or to 
return the result that no such string exists. There have been many such results published since, corresponding to other data 
structures and other conditions; for example, [2,11,15]. In [8] a linear-time algorithm is described to compute a lexicograph-
ically least regular string x corresponding to a given feasible array y, or to return an error if y corresponds to no regular 
string.

In this paper we solve the more general reverse engineering problem for any feasible array y, regardless of whether 
it corresponds to a regular string or not. Moreover, we establish a remarkable connection between labelled graphs and 
indeterminate strings. The remainder of the paper is organized as follows. Section 2 provides preliminary information and all 
the necessary definitions that are used throughout the paper. In Section 3 we prove the surprising result that every feasible 
array is in fact a prefix array of some string (regular or indeterminate); further, we characterize the minimum alphabet size 
of a regular string corresponding to a given prefix array in terms of the largest clique in the negative “prefix” graph P− . 
We go on to give necessary and sufficient conditions that a given prefix array is regular. Section 4 establishes the duality 
between strings (whether regular or indeterminate) and labelled undirected graphs; also it provides a characterization of 
the minimum alphabet size of an indeterminate string x in terms of the number of “independent” maximal cliques in the 
“associated graph” Gx . Section 5 outlines future work.

2. Preliminaries

Traditionally, a string is a sequence of letters taken from some alphabet �. Since we discuss “indeterminate strings” in 
this paper, we begin by generalizing the definition as follows:

Definition 1. A string with base alphabet � is either empty or else a sequence of nonempty subsets of �. A 1-element 
subset of � is called a regular letter; otherwise it is indeterminate. Similarly, a nonempty string consisting only of regular 
letters is regular, otherwise indeterminate. The empty string ε is regular.

All alphabets and all strings discussed in this paper are finite. We denote by �′ the set of all nonempty subsets of �, 
with σ = |�| and σ ′ = |�′| = 2σ − 1. On a given alphabet �, there are altogether (σ ′)n distinct nonempty strings of 
length n, of which σ n are regular.

Definition 2. Two elements λ, μ of �′ are said to match (written λ ≈ μ) if they have nonempty intersection. Two strings x, 
y match (x ≈ y) if they have the same length and all corresponding letters match.

Thus two regular letters match if and only if they are equal. But note that for indeterminate letters λ, μ, ν , it may be 
that λ ≈ μ and λ ≈ ν , while μ �≈ ν: for example, λ = {1, 2}, μ = 1, ν = 2.

Definition 3. If a string x can be written x = u1 v and x = wu2 for nonempty strings v , w , where u1 ≈ u2 , then x is said 
to have a border of length |u1| = |u2|.

Note that choosing v = w = x yields the empty border ε of length 0.



Download English Version:

https://daneshyari.com/en/article/437655

Download Persian Version:

https://daneshyari.com/article/437655

Daneshyari.com

https://daneshyari.com/en/article/437655
https://daneshyari.com/article/437655
https://daneshyari.com

