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Consider a system in which tasks of different execution times arrive continuously and have 
to be executed by a set of machines that are prone to crashes and restarts. In this paper we 
model and study the impact of parallelism and failures on the competitiveness of such an 
online system. In a fault-free environment, a simple Longest-In-System scheduling policy, 
enhanced by a redundancy-avoidance mechanism, guarantees optimality in a long-term 
execution. In the presence of failures though, scheduling becomes a much more challenging 
task. In particular, no parallel deterministic algorithm can be competitive against an off-
line optimal solution, even with one single machine and tasks of only two different 
execution times. We find that when additional energy is provided to the system in the 
form of processing speedup, the situation changes. Specifically, we identify thresholds on 
the speedup under which such competitiveness cannot be achieved by any deterministic 
algorithm, and above which competitive algorithms exist. Finally, we propose algorithms 
that achieve small bounded competitive ratios when the speedup is over the threshold.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Motivation In recent years we have witnessed a dramatic increase on the demand of processing computationally-intensive 
jobs. Uniprocessors are no longer capable of coping with the high computational demands of such jobs. As a result, 
multicore-based parallel machines such as the K-computer [35] and Internet-based supercomputing platforms such as 
SETI@home [26] and EGEE Grid [15] have become prominent computing environments. However, computing in such en-
vironments raises several challenges. For example, computational jobs (or tasks) are injected dynamically and continuously, 
each job may have different computational demands (e.g., CPU usage or processing time) and the processing elements are 
subject to unpredictable failures. Preserving power consumption is another challenge of rising importance. Therefore, there 
is a corresponding need for developing algorithmic solutions that would efficiently cope with such challenges.
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Table 1
Important notation and definitions.

Term Description

m ∈N Number of machines in the system
s ≥ 1 Machine’s speedup
cmin Smallest task cost
cmax Largest task cost
c-task Task of cost c ∈ [cmin, cmax]
ρ = cmax

cmin
Cost ratio

γ = max{� ρ−s
s−1 �,0} Parameter γ used to define competitiveness thresholds

β Parameter used for redundancy avoidance
Condition C1 s < ρ
Condition C2 s < 1 + γ /ρ

Table 2
Summary of results. We define γ = max{� ρ−s

s−1 �, 0} to be a parameter representing the number of cmin-tasks that, in addition to a cmax-task, an algorithm 
with speedup s can complete in a time interval of length (γ + 1)cmin. Parameter β is a parameter of Algorithms LIS and LAF, used for avoiding redundancy 
of task executions. Also note that min{ρ, 1 + γ /ρ} < 2; this follows from the definitions of γ and ρ , and from s ≥ 1.

Condition Number of task costs Task competitiveness Cost competitiveness Algorithm

C1 ∧ C2 ≥ 2 ∞ ∞ Any
¬C1 Any 1 ρ (m, β)-LIS
C1 ∧ ¬C2 2 1 1 γ m-Burst
s ≥ 7/2 Finite ρ 1 (m, β)-LAF

Much research has been dedicated to task scheduling problems over the last decades, each work addressing different 
challenges (e.g., [8,11–14,16,18,19,21,24,29,34]). For example, many works address the issue of dynamic task injections, but 
do not consider failures (e.g., [10,22]). Other works consider scheduling on one machine (e.g., [3,30,33]), with the drawback 
that the power of parallelism is not exploited (provided that tasks are independent). Some works consider failures, but 
assume that tasks are known a priori and their number is bounded (e.g., [5,7,11,18,19,23,24]), where others assume that 
tasks are uniform, that is, they have the same processing times (e.g., [16,17]). Several works consider power-preserving 
issues, but do not consider, for example, failures (e.g., [9,10,34]).

Contributions In this work we consider a computing system in which tasks of different execution times arrive dynamically 
and continuously and must be executed by a set of m ∈ N machines that are prone to crashes and restarts. Due to the 
dynamicity involved, we view this task-executing problem as an online problem and pursue competitive analysis [2,31]. 
We explore the impact of parallelism, different task execution times and faulty environment, on the competitiveness of the 
online system considered. Efficiency is measured as the maximum number of pending tasks as well as the maximum pending 
cost over any point in the execution, where pending tasks are the ones that have been injected in the system but are 
not completed yet, and pending cost is the sum of their execution times. An algorithm is considered to be x-pending-task 
competitive, if under any adversarial pattern (for both task arrivals and machine crashes and restarts) its pending task 
complexity is at most x times larger than the pending task complexity of the offline optimal algorithm OPT, under the same 
adversarial pattern. This holds similarly for x-pending-cost competitiveness, taking into account the pending cost complexity 
of the algorithms.

We show that no parallel algorithm for the problem under study is competitive against the best off-line solution in 
the classical sense, however it becomes competitive if static processoring speed scaling [6,4,10] is applied in the form of a 
speedup above a certain threshold. A speedup s ∈ R+ means that a machine can complete a task s times faster than the 
task’s system specified execution time (and therefore has a meaning only when s ≥ 1). The use of a speedup is a form of 
resource augmentation [28] and impacts the energy consumption of the machine. As a matter of fact, the power consumed 
(i.e., the energy consumed per unit of time) to run a machine at a speed x grows superlinearly with x, and it is typically 
assumed to have a form of P = xα , for α > 1 [1,34]. Hence, a speedup s implies an additional factor of sα−1 in the power 
consumed (and hence energy consumed).

Our investigation aims at developing competitive online algorithms that require the smallest possible speedup. As a 
result, one of the main challenges is to identify the speedup thresholds, under which competitiveness cannot be achieved 
and over which it is possible. In some sense, our work can be seen as investigating the trade-offs between knowledge
and energy in the presence of failures: How much energy (in the form of speedup) does a deterministic online scheduling 
algorithm need in order to match the efficiency (i.e., to be competitive with) of the optimal off-line algorithm that possesses 
complete knowledge of failures and task injections? (It is understood that there is nothing to investigate if the off-line 
solution makes use of speed-scaling as well).

We now summarize our contributions. Table 1 provides useful notation and definitions, and Table 2 provides an overview 
of our main results.
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