Contents lists available at ScienceDirect ## Acta Ecologica Sinica journal homepage: www.elsevier.com/locate/chnaes # Fingerprint natural soil N₂O emission from nitration and denitrification by dual isotopes (¹⁵N and ¹⁸O) and site preferences Zhongsheng Zhang ^{a,*}, Wang Jian Jim ^b, Xianguo Lu ^a - ^a Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, 130102 Changchun, Jilin Province, P. R. China - ^b School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural Center, Baton Rouge, LA 70803, USA #### ARTICLE INFO Article history: Received 18 December 2015 Received in revised form 25 May 2016 Accepted 26 May 2016 Keywords: N_2O Nitrification Denitrification $\delta^{15}N_2O^{bulk}$ $\delta^{18}O$ Site preference #### ABSTRACT Nitrification and denitrification are the main contributors to soil N_2O production and emission, and distinguishing their contributions to N_2O emission under natural conditions is vital to deciphering nitrogen biogeochemistry. Stable isotopes have provided insight to resolve this problem, of which $\delta^{15}N_2O^{\text{bulk}}$ (^{15}N abundance in N_2O), dual isotopes ($\delta^{15}N$, $\delta^{18}O$) and site preference (SP) are the most effective methods currently. $\delta^{15}N_2O^{\text{bulk}}$ is useful in tracing substrates yielding N_2O , but it is helpless to make accurate differentiation between nitrification and denitrification; The dual isotopes, $\delta^{15}N$ and $\delta^{18}O$, introduce O atom sources in partitioning N_2O source and this method could roughly apportion N_2O from nitrification and denitrification. However, expensive equipment requirements and the inherent uncertainties on $\delta^{18}O$ determination owning to few data available hamper its accuracy and applicability on distinguishing nitrification and denitrification. Site preference (SP) provides new insight on distinguishing contribution of nitrification and denitrification on N_2O emission and results in more accuracy results. We summarized that the average values of $\delta^{15}N_2O^{\text{bulk}}$, $\delta^{18}O$ and SP during denitrification, which were -29.29%, 19.78%, and 2.43%, respectively, are much lower than the corresponding values during nitrification, which were -7.87%, 48.03% and 24.14%, respectively. © 2016 Ecological Society of China. Published by Elsevier B.V. All rights reserved. #### Contents | 1. | | duction | | |------|------------------|---|-----| | | 1.1. | $\delta^{15}N_2 O^{bulk}$ fingerprint $N_2 O$ from different substances | 357 | | | 1.2. | Dual isotopes fingerprint of N_2O | 357 | | | 1.3. | The intramolecular ¹⁵ N-site preference: a promising tool for attribution quantification | 358 | | | | Future considerations | | | Ack | Acknowledgements | | 359 | | Refe | References | | | #### 1. Introduction Nitrous oxide (N_2O), a relatively stable greenhouse gas, has stronger warming potential than CO_2 and CH_4 [1], and its long-term presence in atmosphere would exhaustively deplete O_3 by photochemical reaction and draw secondary harms to biosphere on earth [2]. The preindustrial atmospheric N_2O content was 270 ng/L, but it has been increasing since 1750 at the rate of 0.2%–0.3%, and reached to 324 ng/L in 2011 [3,4]. If nothing is done to curb N_2O emission, atmospheric N_2O content is estimated to 350–400 ng/L in 2050, exceeding the current concentration by 83%, and N_2O would exert as the overwhelming O_3 consumer [5]. Soils * Corresponding author. E-mail address: zzslycn@iga.ac.cn (Z. Zhang). are the largest contributors to N_2O emissions, with 6.0 Tg/a from natural soils and 4.2 Tg/a from agricultural soils [6]. Despite extensive studies on N_2O produced by nitrification and denitrification, apportionment of N_2O to these two routes is ambiguous. Microorganism-induced nitrification and denitrification are the main processes yielding N_2O , representing 90% of the total N_2O in global atmosphere [7]. N_2O is the precursor when N_2 produce is ascribed to nitrate denitrification, and is the intermediate during hydroxylamine oxidation [8,9] (Fig. 1). Generally, aerobic condition facilitates nitrification and ammonia in this situation is easily converted into nitrate by oxidation, which include two stages. The first stage, ammonia is oxidized to nitrite and N_2O simultaneously by nitrite bacteria. The second stage, nitrite is shifted into nitrate by nitrobacteria. Denitrification is to reduce nitrate to N_2 and is regarded as the main soil N_2O source [10]. **Fig. 1.** N_2O production in soils. I is the nitrification process, II is the nitrifier denitrification process; III is the typical denitrification process, and IV is the nitrate ammonification process. In I and II, O_2 or H_2O in the arc represent O atom input or output during nitrification and nitrifier denitrification processes. Denitrification generally occurs under anaerobic conditions, and three models are involved: 1) is defined as denitrifier denitrification, that is to say that denitrifying bacteria successively reduce NO_3^- , NO_2 , NO_3^- In this respect to N_2O yield in soil, many complex mechanisms are involved, and both nitrification or denitrification contribute to N_2O emission, which is concomitantly regulated by soil moisture [16,29], oxidation reduction potential [12,13], microbial communities and activities [14-16], organic carbon amounts and qualities, nutrients (N, P, S) availability [17] and so on. Elusive shifting between nitrification and denitrification arise confusions on differentiating N_2O source in soil. Increasing atmospheric nitrogen deposition from fuel consumption and agriculture fertilization, in conjunction with climate change, has greatly changed global nitrogen biogeochemistry, motivated or impeded N_2O emission. So, it is obligate to establish the relative contribution of nitrification and denitrification to N_2O yield. The conventional and traditional technologies are helpless in distinguishing contributions of nitrification from denitrification to soil N_2O fluxes. Some incubation employed inhibitor (acetylene) to eliminate influences of nitrification as much as possible [18,19]. However, there are distinct interspaces. On one hand, there is no pure aerobic or anaerobic conditions allowing alternative nitrification or denitrification in natural conditions, and on the other hand, nitrification and denitrification often occur simultaneously and inter-shifting is ubiquitous. Soil environment in natural conditions are generally obviously derived from incubation experiments, drawing incomparable and questionable conclusions. Thereby, how to partition nitrification and denitrification contributions on N_2O yield under natural conditions is the pre-requisite to decipher nitrogen biogeochemistry, and stable isotopic technologies have provided promising approaches to enhance our knowledge on this item. #### 1.1. $\delta^{15}N_2O^{bulk}$ fingerprint N_2O from different substances Despite extensive studies on N_2O emission labeled by ^{15}N , it still proved difficult to quantify contribution of nitrification and denitrification on soil N_2O . One issue raised in previous work was that controlled soil conditions must be involved by regulating soil moisture or adding inhibitor when only ^{15}N abundance in N_2O bulk ($\delta^{15}N_2O^{\text{bulk}}$) was used. Li et al. [20] reported that, by signature forest and grassland soil using ^{15}N , both nitrification and denitrification contributed to soil N_2O emission under oxygen-abundant conditions, of which nitrification process was prevail and yielded about 53.1%--72.0% N_2O . $\delta^{15}\text{N}$ in different substrate, such as chemical fertilizer, natural soil, arable soil and manure (Fig. 2), often differ greatly. During N_2O formation, bond energy depends on $^{15}\text{N}\text{--M}$ or $^{14}\text{N}\text{--M}$ (M is the iron connecting N atom) and thereby would induce variation of $\delta^{15}\text{N}_2\text{O}^{\text{bulk}}$ from different soil texture or matrix (Table 1), and $\delta^{15}\text{N}_2\text{O}^{\text{bulk}}$ is an effective indicator to fingerprint soil matrix. Nitrification and denitrification had different impacts on $\delta^{-15}\text{N}_2\text{O}^{\text{bulk}}$. When NO_X is reduced, $^{14}\text{NO}_X$ would be preferentially reduced because of the ^{14}N —O bond is easily broken by less energy, inducing exhausted ^{15}N in N_2O produced [21]. However, apportion nitrification and denitrification on N₂O flux could not be carried out just depending on $\delta^{15}\text{N}_2\text{O}^{\text{bulk}}$ under natural conditions up to now. #### 1.2. Dual isotopes fingerprint of N₂O One of the most obvious drawbacks using $\delta^{15}N^{bulk}$ to differentiate denitrification and nitrification contributions on N_2O emission is that it is inefficient to trace N_2O yield during nitrifier-denitrification processes. So, another important atom, oxygen, is taken into account to further fingerprint N_2O source, and it seemed as be a promising approach. N₂O is the most important intermediate during nitrification and denitrification. The dual isotopes of N₂O molecular, ¹⁵N and ¹⁸O, could impress N and O sources and abundance variation during N₂O formation, and then is able to distinguish nitrification from denitrification. O atom in N₂O molecular come from H₂O and soil air with different δ^{18} O abundance, which are +23.5% in soil air and -10% in soil H₂O [24], and this provides the theoretical basis for dual isotopes fingerprint technology. During nitrification processes, O atoms come from both soil air and soil H_2O [23], and $\delta^{18}O$ abundance in N_2O from nitrification occurring in aerobic environment ranked from +13% to +35% compared with VSMOW (Vienna Standard Mean Ocean Water), respectively [25]. This is also proved in N₂O from marine. Ammonia oxidation by ammonia oxidizing archaea (AOA) is the most important pathway for N₂O formation in marine, and $\delta^{15}N$ and $\delta^{18}O$ in N_2O from this process are much higher than those from N₂O produced by ammonia oxidizing bacteria (AOB). However, in spite of the different biological mechanisms for N_2O , O atoms in N_2O formed in the two processes mentioned above are resemble, of which water and air supply 50% of total O atoms, respectively [12,26] (Fig. 2). For denitrification, δ^{18} O in N₂O formed are generally much lower than that in soil NO₃, indicating that most O in N₂O come from soil H₂O during NO₃⁻ reduction into N₂O [23]. However, there is still some elusive inconformity between different researches. Frame et al. [27] reported that O atom of N₂O from NH₂OH oxidation just originates from soil air, and O atom of N2O from nitrifier- **Fig. 2.** δ^5 N $\approx 16^{18}$ O in different substrates. a, nitrate in rainfall; b, nitrate atmospheric deposition in virgin soil, c, nitrate fertilizer; d, NH₄ in fertilizer and rain; e, Nitrogen in soil, f, animal waste. ### Download English Version: # https://daneshyari.com/en/article/4379723 Download Persian Version: https://daneshyari.com/article/4379723 <u>Daneshyari.com</u>