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A B S T R A C T

Recent research has highlighted strong correlations between soil edaphic parameters and bacterial
biodiversity. Here we seek to explore these relationships across the European Union member states with
respect to mapping bacterial biodiversity at the continental scale. As part of the EU FP7 EcoFINDERs
project, bacterial communities from 76 soil samples taken across Europe were assessed from eleven
countries encompassing Arctic to Southern Mediterranean climes, representing a diverse range of soil
types and land uses (grassland, forest and arable land). We found predictable relationships between
community biodiversity (ordination site scores) and land use factors as well as soil properties such as pH.
Based on the modelled relationship between soil pH and bacterial biodiversity found for the surveyed
soils, we were able to predict biodiversity in �1000 soils for which soil pH data had been collected as part
of national scale monitoring. We then performed interpolative mapping utilising existing EU wide soil pH
data to present the first map of bacterial biodiversity across the EU member states. The predictive
accuracy of the map was assessed again using the national scale data, but this time contrasting the EU
wide spatial predictions with point data on bacterial communities. Generally the maps were useful at
predicting broad extremes of biodiversity reflective of low or high pH soils, though predictive accuracy
was limited for Britain particularly for organic/acidic soil communities. Spatial accuracy could however
be increased by utilising published maps of soil pH calculated using geostatistical approaches at both
global and national scales. These findings will contribute to wider efforts to predict and understand the
spatial distribution of soil biodiversity at global scales. Further work should focus on enhancing the
predictive power of such maps, by harmonising global datasets on soil conditioning parameters, soil
properties and biodiversity; and the continued efforts to advance the geostatistical modelling of specific
components of soil biodiversity at local to global scales.

ã 2015 Published by Elsevier B.V.

1. Introduction

Soil bacteria contribute the largest proportion of the soil genetic
resource (Urich et al., 2008; Fierer et al., 2012), reflecting their
ubiquity and high abundance across all soil systems. Given
bacterial importance in the regulation of soil ecosystem services
(Comerford et al., 2013), increased understanding of the environ-
mental controls of bacterial biodiversity is required from both
scientific and policy perspectives in order to predict biodiversity
change, and determine functional consequences of change due to

future climatic or land use pressures. Attempts to characterise the
bacterial communities in soils and understand ecological drivers
have previously been hampered by methodological difficulties in
assessing taxonomic diversity due to the limited culturability of
many bacterial taxa coupled with vast taxonomic diversity (e.g.
Janssen et al., 2002). These problems have to some extent been
overcome through the development of molecular technologies to
assess the diversity of taxonomic marker genes (particularly the
16S rRNA gene) PCR amplified from extracted soil DNA (Hirsch
et al., 2010).

The application of molecular methods to wide ranging globally
dispersed soil samples has revealed that soil bacterial communi-
ties are broadly structured along gradients of soil properties, with
strong correlations between measures of bacterial biodiversity and* Corresponding author.
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key soil variables such as soil pH and organic matter, which are
co-related with broader environmental parameters such as land
use, climate, and parent material (Fierer and Jackson, 2006; Lauber
et al., 2009; Griffiths et al., 2011). Therefore, whilst the causal
mechanisms underlying these relationships are complex it is
apparent that the same pedogenic factors which determine the
nature of soils (e.g. Jenny, 1941) also determine the taxonomic
characteristics and structure of the soil bacterial community. This
new knowledge permits spatial forecasting of bacterial biodiversi-
ty at a range of scales and under change scenarios; which together
with parallel developments in understanding microbial biodiver-
sity-function relationships, may allow for enhanced prediction of
soil processes under future environmental change.

Molecular surveys permit the production of range maps of soil
bacterial distributions at various spatial scales. Spatial distribution
maps provide a visual representation of the forces shaping
populations or communities and therefore provide the foundation
for macro ecological understanding (Elton, 1927). Maps can also
guide policy decisions with respect to land management, and can
be useful visual resources guiding scientific experimentation and
enquiry. Importantly, more recently rasterised maps provide
georeferenced data which can feed wider ecological, climatic or
biogeochemical models. Already there has been several attempts
to map soil microbial properties at national and regional scales,
using molecular methodologies applied to nationwide soil
monitoring schemes (Bru et al., 2011; Griffiths et al., 2011;
Dequiedt et al., 2009, 2011). These studies mapped point sampled
microbial data using interpolative methods (e.g. inverse distance
weighting, kriging; see Bivand et al., 2008) to fit surfaces predicting
the microbial properties at unsampled locations by weighted
averages of surrounding measured values. These methods are
useful to show large differences in microbial properties over large
areas but local accuracy is limited by the spatial scale of sampling.

More advanced geostatistical approaches can be used to predict
a variable of interest at unsampled locations based on known
relationships between the dependent variable and other predictor
variables (e.g. climate, soil type, land cover). Such approaches are
commonly used in wider ecology (sometimes termed environ-
mental-, ecological-, or species-distribution modelling: Elith et al.,
2006), and can be used to predict either species or communities at
unsampled locations (Chapman and Purse, 2011). These environ-
mental correlational approaches have so far been used to predict
historical change in soil bacterial biodiversity due to land use at
regional scales (Fierer et al., 2013); and also to improve on the
interpolated maps of bacterial biodiversity across Great Britain
(Griffiths et al., 2011) by modelling the observed relationships
between bacterial communities and environmental variables, and
then forecasting communities in unsampled locations using
remote sensed land cover information and parent material maps
(Henrys et al., 2015). This paper aside there are few studies which
have examined in detail the predictive performance of such maps
compared to simple interpolation. More widely, large scale spatial
predictions of soil parameters are increasingly being disseminated
through downloadable map resources (e.g. soilgrids.org, ukso.org),
and there is now a need to identify specific predictive limitations in
order to further improve accuracy (Hengl et al., 2014).

Here as part of this special issue reporting results from the EU
FP7 EcoFINDERs project coordinated soil sampling campaign, we
seek to assess the bacterial communities in 76 soils sampled across
Europe in order to produce a soil bacterial map at the European
scale, which can be validated against national scale datasets. We
predict that soil pH will be the strongest correlate with measures of
community biodiversity, which will then allow us to predict and
spatially interpolate communities based on publicly available
European scale point data on soil pH (from the LUCAS survey: Tóth
et al., 2013). The predictive accuracy of this map will be assessed by

comparing predictions with observed point data on bacterial
communities collected with similar methods from over 1000 soils
across Great Britain (Griffiths et al., 2011). We will also explore
whether the predictions from this simple interpolated map can be
improved upon, by spatially predicting communities based on
existing soil pH maps produced using more advanced environ-
mental correlation approaches (from soilgrids.org and ukso.org).

2. Materials and methods

2.1. Sampling

Bacterial communities were examined in soils sampled across
the EU member states as part of the EcoFINDERs project “transect”
sampling campaign, full details of which are provided elsewhere in
this issue (Stone et al., 2015). Briefly, a range of sites spanning a
gradient of soil properties (principally pH, organic matter and
texture), climatic zones, and land uses (grassland, arable, forest)
were targeted for sampling following examination of EU wide
datasets (see Supplementary material for site locations, S1).
Samples were collected at the end of summer 2012 according to
standardised protocols to 5 cm depth, and sent to a central
processing lab for homogenisation and distributing to various
partner labs for further analyses. In total eighty-two soils from
11 countries encompassing Arctic to Southern Mediterranean
climes of which 76 are assessed in this study. Soil chemical
determinations were also conducted by a single laboratory to
provide measures of volumetric moisture content, pH (in water),
texture, and total/organic carbon (C) and nitrogen (N) contents.

2.2. DNA extraction and community analyses

Total genomic DNA was extracted from all soil samples using a
previously described DNA extraction procedure (Plassart et al.,
2012). Briefly, 1 g of soil was mixed at 70 �C with a extraction buffer
containing 100 mM Tris–HCl (pH 8), 100 mM EDTA (pH8), 100 mM
NaCl, 2% (w/v) polyvinylpyrrolidone (40 g mol�1) and 2% (w/v)
sodium dodecyl sulphate. Proteins were precipitated from the
supernatant with 1/10 volume of 3 M sodium acetate, before
nucleic acid precipitation with isopropanol. DNA was further
purified through polyvinylpolypyrrolidone (PVPP) Microbiospin
minicolumns (BIORAD, Marnes-la-Coquette, France) and finally
using the Geneclean Turbo kit (MP-Biomedicals, NY, USA).

Bacterial communities were examined using TRFLP as described
by Griffiths et al. (2011) using the forward primer 63F
(50-CAGGCCTAACACATGCAAGTC-30) labelled at the 50 end with
D4 blue fluorescent dye and reverse primer 530R (50-GTA TTA
CCGCGG CTG CTG-30). Amplifications were performed in 50 ml
reactions under the following conditions: 94 �C for 90 s, followed
by 35 cycles of 94 �C for 45 s, 55 �C for 1 min and 72 �C for 3 min,
followed by a final extension of 72 �C for 10 min. Amplicons were
then purified using the ZR-96 DNA clean-up kit (Zymo research,
Freiburg, Germany), prior to enzymatic digestion. Purified bacterial
DNA was digested with MspI restriction enzyme (New England
Biolabs Inc., Ipswich, MA, USA) at 37 �C for 3 h. Fragment analysis
was performed with a Beckman Coulter CEQ 2000XL capillary
sequencer (Beckman Coulter Corporation, California, USA). Peak
height data were analysed using GeneMarker software (Softge-
netics, LLC, PA, USA). Relative abundances were calculated as the
ratio between the fluorescence of each terminal restriction
fragment (T-RF) and the total integrated fluorescence of all T-RFs.

2.3. Statistical analyses

A site by taxon (TRF) relative abundance table derived from the
TRFLP analyses was used to explore community relationships with
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