Strong matching preclusion for torus networks ${ }^{\alpha}$

Shiying Wang ${ }^{\mathrm{a}, \mathrm{b}, *}$, Kai Feng ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, PR China
${ }^{\mathrm{b}}$ School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, PR China

A R T I C L E I N F O

Article history:

Received 6 September 2012
Received in revised form 26 April 2013
Accepted 24 October 2013
Communicated by S.-y. Hsieh

Keywords:

Interconnection networks
Torus
Cartesian product
Strong matching preclusion

Abstract

The torus network is one of the most popular interconnection network topologies for massively parallel computing systems. Strong matching preclusion that additionally permits more destructive vertex faults in a graph is a more extensive form of the original matching preclusion that assumes only edge faults. In this paper, we establish the strong matching preclusion number and all minimum strong matching preclusion sets for bipartite torus networks and 2-dimensional nonbipartite torus networks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A matching of a graph is a set of pairwise nonadjacent edges. For a graph with n vertices, a matching M is called perfect if its size $|M|=\frac{n}{2}$ for even n, or almost perfect if $|M|=\frac{n-1}{2}$ for odd n. A graph is matchable if it has either a perfect matching or an almost perfect matching. Otherwise, it is called unmatchable. Throughout the paper, we only consider simple and even graphs, that is, graphs with an even number of vertices with no parallel edges or loops. For graph-theoretical terminology and notation not defined here we follow [4]. Let $G=(V(G), E(G))$ be a graph. A set F of edges in G is called a matching preclusion set (MP set for short) if $G-F$ has neither a perfect matching nor an almost perfect matching. The matching preclusion number of G (MP number for short), denoted by $m p(G)$, is defined to be the minimum size of all possible such sets of G. The minimum MP set of G is any MP set whose size is $m p(G)$. A matching preclusion set of a graph is trivial if all its edges are incident to a single vertex.

Since the problem of matching preclusion was first presented by Brigham et al. [3], several classes of graphs have been studied to understand their matching preclusion properties [5-8,11,13,14]. An obvious application of the matching preclusion problem was addressed in [3]: when each node of interconnection networks is demanded to have a special partner at any time, those that have larger matching preclusion numbers will be more robust in the event of link failures.

Another form of matching obstruction, which is in fact more offensive, is through node failures. As an extensive form of matching preclusion, the problem of strong matching preclusion was proposed by Park and Ihm in [12]. A set F of vertices and/or edges in a matchable graph G is called a strong matching preclusion set (SMP set for short) if $G-F$ has neither a perfect matching nor an almost perfect matching. The strong matching preclusion number (SMP number for short) of G, denoted by $\operatorname{smp}(G)$, is defined to be the minimum size of all possible such sets of G. The minimum SMP set of G is any

[^0]SMP set whose size is $\operatorname{smp}(G)$. Note that the strong matching preclusion is more general than the problems discussed in [1,9], which considered only vertex deletions.

Specially, when G itself does not contain perfect matchings or almost perfect matchings, both $\operatorname{smp}(G)$ and $m p(G)$ are regarded as zero. These numbers are undefined for a trivial graph with only one vertex. Notice that an MP set of a graph is a special SMP set of the graph.

Proposition 1.1. (See [12].) For every nontrivial graph $G, \operatorname{smp}(G) \leqslant m p(G)$.

However, the strong matching preclusion numbers did not decrease for such graphs as restricted hypercube-like graphs and recursive circulants [12]. Then, followed by this work, the strong matching preclusion problem was studied for some classes of graphs such as alternating group graphs and split-stars [2].

When a set F of vertices and/or edges is removed from a graph, the set is called a fault set. Let F_{v} and F_{e} be the fault vertex set and the fault edge set, respectively. We have $F=F_{v} \cup F_{e}$. For any vertex $v \in V(G)$, let $N_{G}(v)$ be all neighbouring vertices adjacent to v and let $I_{G}(v)$ be all edges incident to v. Clearly, a fault set, which separates exactly one isolated vertex from the remaining even graph, forms a simple SMP set of the original graph.

Proposition 1.2. (See [12].) Let G be a graph. Given a fault vertex set $X(v) \subseteq N_{G}(v)$ and a fault edge set $Y(v) \subseteq I_{G}(v), X(v) \cup Y(v)$ is an SMP set of G if (i) $w \in X(v)$ if and only if $(v, w) \notin Y(v)$ for every $w \in N_{G}(v)$, and (ii) the number of vertices in $G-(X(v) \cup Y(v))$ is even.

The above proposition suggests an easy way of building SMP sets. Any SMP set constructed as specified in Proposition 1.2 is called trivial. If $\operatorname{smp}(G)=\delta(G)$, then G is called maximally strong matched. If every minimum SMP set of G is trivial, then G is called super strong matched. It is easy to see that, for an arbitrary vertex of degree at least one, there always exists a trivial SMP set which isolates the vertex. This observation leads to the following fact.

Proposition 1.3. (See [12].) For any graph G with no isolated vertices, $\operatorname{smp}(G) \leqslant \delta(G)$, where $\delta(G)$ is the minimum degree of G.

2. Definitions and terminology

The torus forms a basic class of interconnection networks. Let G and H be two simple graphs. Their Cartesian product $G \times H$ is the graph with vertex set $V(G) \times V(H)=\{g h: g \in V(G), h \in V(H)\}$, in which two vertices $g_{1} h_{1}$ and $g_{2} h_{2}$ are adjacent if and only if $g_{1}=g_{2}$ and $\left(h_{1}, h_{2}\right) \in E(H)$, or $\left(g_{1}, g_{2}\right) \in E(G)$ and $h_{1}=h_{2}$. For $n \geqslant 3$, let $G_{1}, G_{2}, \ldots, G_{n}$ be n simple graphs. Similarly, the Cartesian product $G_{1} \times G_{2} \times \cdots \times G_{n}$ can be defined. It is easy to see that " \times " is associative and commutative under isomorphism. Let C_{k} be the cycle of length k with the vertex set $\{0,1, \ldots, k-1\}$. Two vertices $u, v \in V\left(C_{k}\right)$ are adjacent in C_{k} if and only if $u=v \pm 1(\bmod k)$. The torus $T\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ with $n \geqslant 2$ and $k_{i} \geqslant 3$ for all i is defined to be $T\left(k_{1}, k_{2}, \ldots, k_{n}\right)=C_{k_{1}} \times C_{k_{2}} \times \cdots \times C_{k_{n}}$ with the vertex set $\left\{u_{1} u_{2} \ldots u_{n}: u_{i} \in\left\{0,1, \ldots, k_{i}-1\right\}, 1 \leqslant i \leqslant n\right\}$. Two vertices $u_{1} u_{2} \ldots u_{n}$ and $v_{1} v_{2} \ldots v_{n}$ are adjacent in $T\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ if and only if there exists some $j \in\{1,2, \ldots, n\}$ such that $u_{j}=v_{j} \pm 1\left(\bmod k_{j}\right)$ and $u_{i}=v_{i}$ for $i \in\{1,2, \ldots, n\} \backslash\{j\}$. Clearly, $T\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ is a connected $2 n$-regular graph consisting of $k_{1} k_{2} \ldots k_{n}$ vertices. Note that we only consider even graphs in this paper, which implies that at least one of $k_{1}, k_{2}, \ldots, k_{n}$ is even.

Let $T\left(k_{1}, k_{2}\right)$ be a 2-dimensional torus, where $k_{1} \geqslant 3$ and $k_{2} \geqslant 3$. Then $T\left(k_{1}, k_{2}\right)=C_{k_{1}} \times C_{k_{2}}$. We view $C_{k_{1}} \times C_{k_{2}}$ as consisting of k_{2} copies of $C_{k_{1}}$. Let these copies be $C_{k_{1}}^{0}, C_{k_{1}}^{1}, \ldots, C_{k_{1}}^{k_{2}-1}$ labeled along the cycle $C_{k_{2}}$. The edges between different copies of $C_{k_{1}}$ are called cross edges. Denote the set of cross edges between $C_{k_{1}}^{i}$ and $C_{k_{1}}^{i+1\left(\bmod k_{2}\right)}$ by $M_{i, i+1\left(\bmod k_{2}\right)}$ for $0 \leqslant i \leqslant k_{2}-1$. For clarity of presentation, we omit writing " $\left(\bmod k_{2}\right)$ " in similar expressions for the remainder of the paper. Clearly, each of these sets is a matching saturating all vertices of the corresponding copies of $C_{k_{1}}$. For convenience, a vertex with subscript 0 (e.g. x_{0}) will denote a vertex in $C_{k_{1}}^{0}$, the corresponding vertex with subscript 1 (e.g. x_{1}) will denote the vertex in $C_{k_{1}}^{1}$ which is adjacent to this vertex via a cross edge, etc., and the corresponding vertex with subscript $k_{2}-1$ (e.g. $x_{k_{2}-1}$) will denote the vertex in $C_{k_{1}}^{k_{2}-1}$ which is adjacent to this vertex via a cross edge. The vertices $x_{0}, x_{1}, \ldots, x_{k_{2}-1}$ and the cross edges between them form a cycle of length k_{2}, which is denoted by $C_{k_{2}}\left(x_{i}\right)$ for some $i \in\left\{0,1, \ldots, k_{2}-1\right\}$. For any matching M_{i} in $C_{k_{1}}^{i}$, the matching M_{j}, which satisfies that $\left(x_{j}, y_{j}\right) \in M_{j}$ if and only if $\left(x_{i}, y_{i}\right) \in M_{i}$, is called the corresponding matching to M_{i}.

A graph is bipartite if its vertex set can be partitioned into two subsets X and Y so that every edge has one end in X and one end in Y. A path is a simple graph whose vertices can be arranged in a linear sequence in such a way that two vertices are adjacent if they are consecutive in the sequence, and are nonadjacent otherwise. The length of a path is the number of its edges. The path is odd or even according to the parity of its length. For notational simplicity, denote by $|G|$ the number of vertices in a graph G. Let G_{1} and G_{2} be two graphs. $G_{1} \cup G_{2}$ is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

https://daneshyari.com/en/article/438359

Download Persian Version:

https://daneshyari.com/article/438359

Daneshyari.com

[^0]: th This work is supported by the National Natural Science Foundation of China (61370001) and the Doctoral Fund of Ministry of Education of China (20111401110005).

 * Corresponding author at: College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, PR China.

 E-mail addresses: shiying@sxu.edu.cn (S. Wang), 217fenger@163.com (K. Feng).

