
Theoretical Computer Science 520 (2014) 97–110

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Strong matching preclusion for torus networks ✩

Shiying Wang a,b,∗, Kai Feng b

a College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, PR China
b School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 September 2012
Received in revised form 26 April 2013
Accepted 24 October 2013
Communicated by S.-y. Hsieh

Keywords:
Interconnection networks
Torus
Cartesian product
Strong matching preclusion

The torus network is one of the most popular interconnection network topologies for
massively parallel computing systems. Strong matching preclusion that additionally permits
more destructive vertex faults in a graph is a more extensive form of the original matching
preclusion that assumes only edge faults. In this paper, we establish the strong matching
preclusion number and all minimum strong matching preclusion sets for bipartite torus
networks and 2-dimensional nonbipartite torus networks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A matching of a graph is a set of pairwise nonadjacent edges. For a graph with n vertices, a matching M is called
perfect if its size |M| = n

2 for even n, or almost perfect if |M| = n−1
2 for odd n. A graph is matchable if it has either

a perfect matching or an almost perfect matching. Otherwise, it is called unmatchable. Throughout the paper, we only
consider simple and even graphs, that is, graphs with an even number of vertices with no parallel edges or loops. For
graph-theoretical terminology and notation not defined here we follow [4]. Let G = (V (G), E(G)) be a graph. A set F of
edges in G is called a matching preclusion set (MP set for short) if G − F has neither a perfect matching nor an almost
perfect matching. The matching preclusion number of G (MP number for short), denoted by mp(G), is defined to be the
minimum size of all possible such sets of G . The minimum MP set of G is any MP set whose size is mp(G). A matching
preclusion set of a graph is trivial if all its edges are incident to a single vertex.

Since the problem of matching preclusion was first presented by Brigham et al. [3], several classes of graphs have
been studied to understand their matching preclusion properties [5–8,11,13,14]. An obvious application of the matching
preclusion problem was addressed in [3]: when each node of interconnection networks is demanded to have a special
partner at any time, those that have larger matching preclusion numbers will be more robust in the event of link failures.

Another form of matching obstruction, which is in fact more offensive, is through node failures. As an extensive form of
matching preclusion, the problem of strong matching preclusion was proposed by Park and Ihm in [12]. A set F of vertices
and/or edges in a matchable graph G is called a strong matching preclusion set (SMP set for short) if G − F has neither
a perfect matching nor an almost perfect matching. The strong matching preclusion number (SMP number for short) of G ,
denoted by smp(G), is defined to be the minimum size of all possible such sets of G . The minimum SMP set of G is any
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SMP set whose size is smp(G). Note that the strong matching preclusion is more general than the problems discussed in
[1,9], which considered only vertex deletions.

Specially, when G itself does not contain perfect matchings or almost perfect matchings, both smp(G) and mp(G) are
regarded as zero. These numbers are undefined for a trivial graph with only one vertex. Notice that an MP set of a graph is
a special SMP set of the graph.

Proposition 1.1. (See [12].) For every nontrivial graph G, smp(G) � mp(G).

However, the strong matching preclusion numbers did not decrease for such graphs as restricted hypercube-like graphs
and recursive circulants [12]. Then, followed by this work, the strong matching preclusion problem was studied for some
classes of graphs such as alternating group graphs and split-stars [2].

When a set F of vertices and/or edges is removed from a graph, the set is called a fault set. Let F v and Fe be the fault
vertex set and the fault edge set, respectively. We have F = F v ∪ Fe . For any vertex v ∈ V (G), let NG(v) be all neighbouring
vertices adjacent to v and let IG(v) be all edges incident to v . Clearly, a fault set, which separates exactly one isolated
vertex from the remaining even graph, forms a simple SMP set of the original graph.

Proposition 1.2. (See [12].) Let G be a graph. Given a fault vertex set X(v) ⊆ NG(v) and a fault edge set Y (v) ⊆ IG (v), X(v)∪ Y (v) is
an SMP set of G if (i) w ∈ X(v) if and only if (v, w) /∈ Y (v) for every w ∈ NG(v), and (ii) the number of vertices in G − (X(v)∪ Y (v))

is even.

The above proposition suggests an easy way of building SMP sets. Any SMP set constructed as specified in Proposition 1.2
is called trivial. If smp(G) = δ(G), then G is called maximally strong matched. If every minimum SMP set of G is trivial, then
G is called super strong matched. It is easy to see that, for an arbitrary vertex of degree at least one, there always exists a
trivial SMP set which isolates the vertex. This observation leads to the following fact.

Proposition 1.3. (See [12].) For any graph G with no isolated vertices, smp(G) � δ(G), where δ(G) is the minimum degree of G.

2. Definitions and terminology

The torus forms a basic class of interconnection networks. Let G and H be two simple graphs. Their Cartesian product
G × H is the graph with vertex set V (G) × V (H) = {gh: g ∈ V (G), h ∈ V (H)}, in which two vertices g1h1 and g2h2 are
adjacent if and only if g1 = g2 and (h1,h2) ∈ E(H), or (g1, g2) ∈ E(G) and h1 = h2. For n � 3, let G1, G2, . . . , Gn be n
simple graphs. Similarly, the Cartesian product G1 × G2 × · · · × Gn can be defined. It is easy to see that “×” is associative
and commutative under isomorphism. Let Ck be the cycle of length k with the vertex set {0,1, . . . ,k − 1}. Two vertices
u, v ∈ V (Ck) are adjacent in Ck if and only if u = v ± 1 (mod k). The torus T (k1,k2, . . . ,kn) with n � 2 and ki � 3 for all i
is defined to be T (k1,k2, . . . ,kn) = Ck1 × Ck2 × · · · × Ckn with the vertex set {u1u2 . . . un: ui ∈ {0,1, . . . ,ki − 1}, 1 � i � n}.
Two vertices u1u2 . . . un and v1 v2 . . . vn are adjacent in T (k1,k2, . . . ,kn) if and only if there exists some j ∈ {1,2, . . . ,n}
such that u j = v j ± 1 (mod k j) and ui = vi for i ∈ {1,2, . . . ,n}\{ j}. Clearly, T (k1,k2, . . . ,kn) is a connected 2n-regular graph
consisting of k1k2 . . .kn vertices. Note that we only consider even graphs in this paper, which implies that at least one of
k1,k2, . . . ,kn is even.

Let T (k1,k2) be a 2-dimensional torus, where k1 � 3 and k2 � 3. Then T (k1,k2) = Ck1 × Ck2 . We view Ck1 × Ck2 as

consisting of k2 copies of Ck1 . Let these copies be C0
k1

, C1
k1

, . . . , Ck2−1
k1

labeled along the cycle Ck2 . The edges between dif-

ferent copies of Ck1 are called cross edges. Denote the set of cross edges between C i
k1

and C i+1(mod k2)

k1
by Mi,i+1(mod k2)

for 0 � i � k2 − 1. For clarity of presentation, we omit writing “(mod k2)” in similar expressions for the remainder of the
paper. Clearly, each of these sets is a matching saturating all vertices of the corresponding copies of Ck1 . For convenience,
a vertex with subscript 0 (e.g. x0) will denote a vertex in C0

k1
, the corresponding vertex with subscript 1 (e.g. x1) will denote

the vertex in C1
k1

which is adjacent to this vertex via a cross edge, etc., and the corresponding vertex with subscript k2 − 1

(e.g. xk2−1) will denote the vertex in Ck2−1
k1

which is adjacent to this vertex via a cross edge. The vertices x0, x1, . . . , xk2−1

and the cross edges between them form a cycle of length k2, which is denoted by Ck2 (xi) for some i ∈ {0,1, . . . ,k2 − 1}.
For any matching Mi in C i

k1
, the matching M j , which satisfies that (x j, y j) ∈ M j if and only if (xi, yi) ∈ Mi , is called the

corresponding matching to Mi .
A graph is bipartite if its vertex set can be partitioned into two subsets X and Y so that every edge has one end in X

and one end in Y . A path is a simple graph whose vertices can be arranged in a linear sequence in such a way that two
vertices are adjacent if they are consecutive in the sequence, and are nonadjacent otherwise. The length of a path is the
number of its edges. The path is odd or even according to the parity of its length. For notational simplicity, denote by |G|
the number of vertices in a graph G . Let G1 and G2 be two graphs. G1 ∪ G2 is the graph with vertex set V (G1)∪ V (G2) and
edge set E(G1) ∪ E(G2).
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