
Computer-Aided Design 46 (2014) 101–109

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Solving multivariate polynomial systems using hyperplane arithmetic
and linear programming

Iddo Hanniel
Technion, Israel Institute of Technology, Haifa, Israel

h i g h l i g h t s

• A new scalable algorithm for solving systems of multivariate polynomials.
• The concept of hyperplane arithmetic, which is used in our algorithm.
• A benchmark of example systems that are scalable in the number of variables.
• Implementation and comparison with previous algorithms.

a r t i c l e i n f o

Keywords:
Subdivision solver
Multivariate solver
Geometric constraints

a b s t r a c t

Solving polynomial systems of equations is an important problem in many fields such as computer-aided
design, manufacturing and robotics. In recent years, subdivision-based solvers, which typically make use
of the properties of the Bézier/B-spline representation, have proven successful in solving such systems of
polynomial constraints. A major drawback in using subdivision solvers is their lack of scalability. When
the given constraint is represented as a tensor product of its variables, it grows exponentially in size as a
function of the number of variables. In this paper, we present a new method for solving systems of poly-
nomial constraints, which scales nicely for systems with a large number of variables and relatively low
degree. Such systems appear in many application domains. Themethod is based on the concept of bound-
ing hyperplane arithmetic, which can be viewed as a generalization of interval arithmetic. We construct
bounding hyperplanes, which are then passed to a linear programming solver in order to reduce the root
domain. We have implemented our method and present experimental results. The method is compared
to previous methods and its advantages are discussed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Solving polynomial systems of equations is a crucial problem in
many fields such as robotics [1], computer aided design andmanu-
facturing [2,3], and many others [4]. This problem, namely finding
the roots of a set ofmultivariate polynomial equations, is a difficult
one and various approaches have been proposed for it. Symbolical
approaches, such as Gröbner bases and similar elimination-based
techniques [5], map the original system to a simpler one, which
preserves the solution set. Polynomial continuation methods (also
known as homotopymethods [4]) start at roots of a simpler system
and trace a continuous transformation of the roots to the desired
solution. These methods handle the system in a purely algebraic
manner, find all complex and real roots, and give general informa-
tion about the solution set. Such methods are typically not well-
suited if only real roots are required.

E-mail address: ihanniel@technion.ac.il.

1.1. Subdivision methods

In recent years a family of solvers that focuses only on real roots
in a given domain has been introduced. These methods are based
on subdividing the domain and purging away subdomains that
cannot contain a root. Thus, they are known as subdivision meth-
ods (sometimes such methods are referred to as exclusion or gen-
eralized bisection methods). Given n implicit algebraic equations
in n variables,

Fi(x1, x2, . . . , xn) = 0, i = 1, . . . , n, (1)

we seek all x = (x1, x2, . . . , xn) that simultaneously satisfy Eq. (1).
A typical frame of a subdivision algorithm for finding the roots

of a polynomial system F (x1, . . . , xn) = 0 over an n-dimensional
domain box bwithin some predefined tolerance ϵ goes as follows:

Algorithm: root_isolation_in_box
Input: F (x1, . . . , xn), Box b[xmin

1 , xmax
1 ] × · · · × [xmin

n , xmax
n ]

Output: list⟨Box⟩boxes.

0010-4485/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cad.2013.08.022

http://dx.doi.org/10.1016/j.cad.2013.08.022
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2013.08.022&domain=pdf
mailto:ihanniel@technion.ac.il
http://dx.doi.org/10.1016/j.cad.2013.08.022


102 I. Hanniel / Computer-Aided Design 46 (2014) 101–109

(1) If (max(xmax
i −xmin

i ) < ϵ) append b to output boxes and return.
(2) Evaluate bound interval on F in b.
(3) If bound does not contain 0, return (there is no solution in b).
(4) Otherwise: Split b into subdomains, b1, b2.
(5) root_isolation_in_box (F , b1, boxes).
(6) root_isolation_in_box (F , b2, boxes).

There are various modifications and enhancements to this gen-
eral framework. The no-solution test in step (3) can be enhanced
with single solution tests [6,7], which enable stopping the sub-
division process earlier. Then, the algorithm can switch to faster
numeric methods such as the Newton–Raphson iteration, which
converge to a single root. Another commonmodification performs
a more sophisticated domain reduction [8,9] in step (4), which en-
ables to find tighter subdomains that contain roots and therefore
accelerates the convergence of the algorithm.

A common approach for subdivision solvers, popular for its sim-
plicity and wide generality, is interval arithmetic [10–12]. In in-
terval arithmetic a value x is represented by a bounding interval
X = [xmin, xmax

]. Let Fi(x1, x2, . . . , xn) be a scalar function in n un-
knowns, defined in a box b = [xmin

1 , xmax
1 ] × · · · × [xmin

n , xmax
n ]. An

interval evaluation of Fi in b is an interval [Fmin, Fmax
] such that

Fmin
≤ Fi ≤ Fmax for any value of (x1, . . . , xn) ∈ b. That is, an

interval evaluation of a function for the box gives an interval that
contains all possible values of the function evaluated on points in
the box. Therefore, if the interval evaluation of Fi ∈ b does not
contain zero, then no root can exist in b. This makes it suitable for
use in the root isolation algorithmdescribed above. There aremany
implementations of interval arithmetic software packages [13,14]
and in particular the ALIAS library [15] implements interval meth-
ods for the determination of real roots of system of equations and
inequalities. The main drawback of interval arithmetic is that the
bounds given by the interval evaluation are not tight and with ev-
ery arithmetic operation the looseness may accumulate. Thus, the
interval evaluationmay give bounds that are too loose to be useful.

1.2. Bézier/B-spline subdivision methods

Subdivision methods that are based on the tensorial BézierB-
spline representation [16,2,8,9] give tight bounds for an exclusion
test, based on the convex hull property of the basis. They have been
implemented in recent years and applied successfully to a wide
variety of problem domains [2,3].

In B-spline/Bézier subdivision solvers (e.g., [2]), the Fi, i =

1, . . . , n, from Eq. (1) are usually represented as B-spline or
Bézier multivariate scalar functions, i.e.,

Fi =


i1

· · ·


in

Pi1,...,inBi1,ki1
(x1) · · · Bin,kin (xn), (2)

where Bij,kij
are the ij’th kij-degree Bézier/B-spline basis functions.

Patrikalakis and Sherbrooke [9] exploited the special properties
of the Bézier representation for efficient reduction of the subdo-
main where roots can exist. In their Projected Polyhedron (PP) al-
gorithm the points of the control polyhedron are projected onto
two-dimensional planes and the convex hull of their projection
is computed. The intersections of the convex hulls are then used
to reduce the domain. To achieve more robustness, Maekawa and
Patrikalakis [17,18,3] extended the PP algorithm to operate in
rounded interval arithmetic. This resulted in the Interval Projected
Polyhedron (IPP) algorithm. Mourrain and Pavone [8] proposed a
modification of the IPP algorithm so that instead of using the con-
vex hull of the projected control points, the upper and lower en-
velopes of the projections would be used as control polygons of
two new Bézier forms. These Bézier forms still bound the origi-
nal function from above and below, and therefore can be used as
a tighter bound. They use a univariate root solver to find the roots

of these Bézier forms, and use them to construct the bounding in-
tervals. Mourrain and Pavone also suggest a preconditioning step
that uses an orthogonalization approach, whichmakes the domain
reduction more efficient.

A single-solution test for B-spline/Bézier based solvers was pro-
posed in [19]. This termination criterion was based on computing
the normal cones of the function using the Bézier or B-spline repre-
sentation. The single solution test is then implemented using a dual
hyperplane representation of the normal cones (see [6] for details).

1.3. Limitations of B-spline/Bézier subdivision methods

As noted above, B-spline/Bézier subdivision solvers have been
used successfully in recent years. However, the usage of the tensor
form has a scalability limitation [20,21], which makes it imprac-
tical for systems with a large number of variables. It can be seen
from Eq. (2), that the B-spline/Bézier representation grows expo-
nentiallywith the number of variables n. Given amultivariate poly-
nomial inRn (i.e., of dimension n, with n unknowns x1, . . . , xn) and
degree d, it is typically represented with O(nd) coefficients using
the standardmonomial form. However, it will be represented with
O((d + 1)n) coefficients using the tensorial B-spline/Bézier rep-
resentation. Thus, the B-spline/Bézier representation grows expo-
nentiallywith n, whereas themonomial representation only grows
polynomially in n. Therefore, when the degree d is much smaller
than n, the B-spline/Bézier representation is not efficient.

Furthermore, in many cases in practice, the actual monomial
representation in standard form is sparse and consists of fewer
coefficients. For example, representing the constant 1 inmonomial
form requires just one coefficient, compared to O((d + 1)n) in the
dense Bernstein-Bézier representation. Similarly, representing a
linear polynomial a0+a1x1+a2x2+· · ·+anxn requiresn coefficients
in the power basis and O((d + 1)n) in the Bernstein-Bézier basis.
Due to its exponential growth and its dense representation, using
B-spline/Bézier subdivision methods is especially problematic for
many engineering problems that are characterized by (or can be
transformed to) systems of high-dimension (i.e., a large number of
variables n) and relatively low degree d. For example, computing
the forward kinematics of a parallel robot [1,8] can be transformed
to a system of quadratic constraints, but the number of variables
grows with each joint of the mechanism.

Little work has addressed the explosion of the B-spline/Bézier
form for high-dimensional polynomials. Elber and Grandine [20]
represent multivariates as expression trees and compute bounds
on the expressions using interval arithmetic, to overcome this
problem. Their approach is natural for symbolic manipulations of
free-form curves and surfaces. It is thus suited to handle problems
arising from manipulations of splines with a large number of con-
trol points (see [20]). However, the bounds given by the interval
arithmetic over the expression tree are not tight. Furthermore, the
expression tree structure is not well suited for more advanced do-
main reduction algorithms such as the Projected Polyhedron al-
gorithm. Fünfzig et al. [21] proposed a method based on linear
programming (LP [22]) to address the high-dimensionality prob-
lem for quadratic polynomials. Theyuse a linearization of the terms
in the polynomials, representing each term of type XiXj as a sep-
arate variable of an LP problem. Tight bounds on these variables
are constructed using Bernstein polyhedra (see [21] for details)
and these inequalities are solved using an LP solver, resulting in
a domain reduction. While their method is successful in handling
relatively high-dimensional systems of quadratic multivariate
polynomials, it is not easily extended to higher degrees. Further-
more, the LP problem constructed by thismethod is relatively large
since the number of variables depends on the number of terms in
the problem, which is quadratic in the general case.

In this paper, wewill present a newmethod for solving systems
of multivariate polynomials, which scales nicely for systems with
a large number of variables and relatively low degree. In Section 2,



Download English Version:

https://daneshyari.com/en/article/439461

Download Persian Version:

https://daneshyari.com/article/439461

Daneshyari.com

https://daneshyari.com/en/article/439461
https://daneshyari.com/article/439461
https://daneshyari.com

