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Linear regression is a frequently-used statistical technique in marine ecology, either to model simple relation-
ships or as a component of more complex models. The apparent simplicity of this technique often obscures its
far more complex underpinnings, upon which its validity, and ultimate ecological interpretations, wholly
depend. We present a non-technical review of the foundations of linear regression and its application in marine
ecology, with emphasis on correct model specification, the different concepts of linearity, the issues surrounding
data transformation, the assumptions which must be respected, and validation of the regression model. The
necessity of reporting the results of regression diagnostics is stressed; contrary to widespread practice in marine
ecology, R2 and p-values alone do not provide sufficient evidence to form conclusions.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

When analyzingmarine ecological data, what could be simpler than
a linear regression? Until recently, Excel® would do it without even
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using the term itself (‘trend’ was so much more user-friendly!). In this
ubiquitous statistical technique, as in all others, the devil is not only in
the details, but also in the assumptions; for what we have here is a
mathematical technique which will always work perfectly in the ab-
stract world of mathematics, but which will never work perfectly, and
often will not work very well at all, in the real world. Linear regression
is an attempt to describe complex, incompletely understood real-life
processes in the simplest and most accurate (aka mathematical) terms
possible; at times the correspondence is rather good, but at others, it
is like fitting a Phillips screwdriver into a Robertson screw. In other
words, the mathematical construct is a model which we hope to use
to describe a real-life relation. And in the words of the patriarch of
modelization, George Box, ‘All models are wrong; some are useful’
(Box, 1976).

In a previous paperwe attempted to provide guidelines for strength-
ening statistical usage in marine biology, with the central concerns of
frequentist (hypothesis-testing) and inferential approaches (Beninger
et al., 2012). In the present work, we wish to address another founda-
tional aspect of statistical analysis in marine ecology: linear regression.

Like all statistical techniques, linear regression is often considered by
non-statisticians to be a simple,mechanical tool, performed at the touch
of a computer key, without proper consideration of its restrictions,
assumptions, and weaknesses, thereby covertly combining ease of
operation with ease of error. The purpose of this review is to give a
non-technical overview of linear regression principles, as well as the
precautions to avoid the most common and serious pitfalls. We pay
special attention to the most frequently-violated assumptions of linear
regression, in the hope that incorrect usage might diminish in the near
future.

At the outset, we must state what linear regression is, and what we
hope to accomplish with it, before delving into whether or not we can
actually do it, and how.

1.1. What is linear regression?

Regression analysis is a generic term for a group of different statisti-
cal techniques. The purpose of all these techniques is to examine the
relationship between variables. Themost common type of linear regres-
sion is Type I regression, inwhichwe attempt to determine the relation-
ship between dependent and explanatory or independent variables.
Less well-known is Type II regression, in which there are no indepen-
dent variables, and all variables can influence each other. A short glossa-
ry of the linear regression types is provided in Table 1, and these topics
will be developed in the following sections. We will focus on Type I
linear regression, which is widely used in many different contexts in
aquatic ecology, e.g. the species-area relationship (Begon et al., 1996;
Peake and Quinn, 1993), the relationship between population density
and body size of benthic invertebrate species (Schmid, 2000), the char-
acterization of spatial patterning (Beninger and Boldina, 2014; Seuront,
2010), the multiple fields in which allometric relations are prominent,
e.g. suspension-feeding, population dynamics, metabolic scaling
(Carey et al., 2013; Cranford et al., 2011; Gosling, 2015; Hirst, 2012;

Robinson et al., 2010), DEB modeling (Duarte et al., 2012; Rosland
et al., 2009), relation of phytoplankton cell size and abiotic factors
(Finkel et al., 2010), etc. Although this technique is most frequently
used to model relationships which are graphically characterized by a
straight line, it is important to note that it may also be used to model
certain curvilinear relationships (Montgomery and Peck, 1992). This
aspect will be explained in Section 2.1.

1.2. What can we accomplish with linear regression?

There are three possible objectives for linear regression analysis in
marine ecology:

1) Stating the nature of the relationship between two variables. If our
only purpose is to state that ‘this is the equation which appears to
characterize the relationship’, then we have very few preconditions
and assumptions to worry about. However, this is not a very useful
tool in marine ecology, where we usually wish to predict the value
of the dependent variable for a given value of the independent
variable (e.g. what sardine or tuna weight corresponds to what
sardine or tuna length-values much quicker and easier to measure
shipboard?)

2) Dependent variable prediction within the range of observed depen-
dent variables. Here we simply wish to predict any y-value within
those corresponding to the maximum and minimum observed
x-values, e.g. what weight for any length which falls within the
x-coordinates of the maximum and minimum weight values. This
is a much more useful objective, but the trade-off is that it requires
more, and stricter, assumptions.

3) Dependent variable prediction beyond the range of observed depen-
dent variables. Here we attempt to boldly go where none of our data
has gone before, i.e. beyond the maximum and minimum observed
y-values. This extension of modeling has been used for everything
from enzyme kinetics to climate change. It is usually an attempt to
predict a future y-value, something humans have tried to do since
they became aware that there is a future. Naturally, this type of
objective carries the greatest load of restrictions, assumptions,
caveats, and risk of error.

1.3. From the mathematical to the statistical

Linear regression uses themodel of a straight line,whosemathemat-
ical equation is the familiar.

Y = a + bx

where a is the y-intercept and b is the slope of the line. Statisticians
prefer the notation.

Y = β0 + β1X1

for the population model (Greek letters used by convention), which
highlights the fact that the slope and y-intercept are both parameters
of the equation.

Much of the very real misunderstanding and misuse of linear
regression stems from the widespread tendency of marine ecologists
to assume that the abstract, perfect mathematical world can be used
to directly model themuchmessier real world. In the real world, an un-
known number of uncontrolled variables other than the independent
variable can influence the dependent variable, e.g. individual variations
in physiology, handling time of individual samples, or even atmospheric
pressure variations. We therefore know that other variables can influ-
ence the dependant variable, but we cannot identify them or measure
their magnitude. Furthermore, these variables may influence the de-
pendant variables in either an additive fashion (i.e. add their unknown
positive or negative values to the linear equation) or in a multiplicative

Table 1
A short glossary of frequently-misunderstood linear regression terms.

Linear regression Requires linear models (linear in parameters) which
may have curvilinear form

Non-linear regression Requires non-linear models (non-linear in parameters)
Multiple linear regression Regression with several independent variables
Polynomial linear regression A special case of multiple linear regression describing

a curvilinear relationship
Type I linear regression Assumes an asymmetrical relationship between

dependent and independent variables
Type II linear regression Assumes a symmetrical relationship between

variables; there is no independent variable
Estimator Function used to calculate the regression equation

from the observed data
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