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h i g h l i g h t s

• Shortest geodesic is not able to solve the initial value problem of discrete geodesic.
• Geodesic equation are second-order ODEs.
• We solve the initial value problem on triangle meshes by solving a first-order ODE
• The computed discrete geodesic path converges to the one on the smooth surface.
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a b s t r a c t

Computing geodesic paths and distances is a common operation in computer graphics and computer-
aided geometric design. The existing discrete geodesic algorithms are mainly designed to solve the
boundary value problem, i.e., to find the shortest path between two given points. In this paper, we focus
on the initial value problem, i.e., finding a uniquely determined geodesic path from a given point in any
direction. Since the shortest paths do not provide the unique solution on triangle meshes, we solve the
initial value problem in an indirect manner: given a fixed point and an initial tangent direction on a
triangle mesh M , we first compute a geodesic curve γ on a piecewise smooth surface M , which well
approximates the input mesh M and can be constructed at little cost. Then, we solve a first-order ODE of
the tangent vector using the fourth-order Runge–Kutta method, and parallel transport it along γ . When
the geodesic curve reaches the boundary of the current patch, its tangent can be directly transported to
the neighboring patch, thanks to the G1-continuity along the common boundary of two adjacent patches.
Finally, once the geodesic curve γ is available, we project it onto the underlying mesh M , producing the
discrete geodesic path γ , which is guaranteed to be unique on M . It is worth noting that our method
is different from the conventional methods of directly solving the geodesic equation (i.e., a second-
order ODE of the position) on piecewise smooth surfaces, which are difficult to implement due to the
complicated representation of the geodesic equation involving Christoffel symbols. The proposedmethod,
based on the first-order ODE of the tangent vector, is intuitive and easy for implementation. Ourmethod is
particularly useful for computing geodesic paths on low-resolution meshes which may have large and/or
skinny triangles, since the conventional straightest geodesic paths are usually far from the ground truth.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Computing geodesic distances and geodesic paths plays an
important role in many fields, such as CAD/CAM [1], path plan-
ning [2], shape analysis [3], parameterization [4,5], segmenta-
tion [6], and medial axis [7]. Geodesics on smooth surfaces are
well understood in classic differential geometry. However, the dis-
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crete geodesic problem, i.e., computing geodesic distances and
paths on discrete domains such as polygonalmeshes, is fundamen-
tally different from its smooth counterpart, due to the difference
between smooth and discrete domains. For example, geodesics
is both straightest and locally shortest on smooth surfaces, but
such a nice property does not hold on polygonal meshes. The dis-
crete shortest geodesic is not equivalent to the discrete straightest
geodesic,which bisects the vertex angles, since the former is amet-
ric but the latter is not.

As a fundamental problem in computational geometry and ge-
ometric modeling, the discrete geodesic problem has been stud-
ied extensively in the past three decades. To date, many elegant
algorithms have been proposed. Representative works include the
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Fig. 1. The discrete shortest geodesic does not solve the initial value problem. Let
v be a saddle vertex, whose curve angle is more than 2π . When a shortest geodesic
path, say γ (s, v), passes through v, it splits into many outgoing geodesic paths:
any line segment pv in the fan-shaped area (in gray) together with γ (s, v), is a
shortest path from s to p. Therefore, the initial value problemdoes not have a unique
solution, if one considers the shortest geodesic paths.

exact1 algorithms (e.g., theMitchell–Mount–Papadimitriou (MMP)
algorithm [8] and the Chen–Han (CH) algorithm [9]), the PDEmeth-
ods (e.g., the fast marching method [10] and the heat method
[11,12]), and the graph-theoretic methods (e.g., the saddle vertex
graph method [13]). These algorithms, however, are mainly de-
signed to solve the boundary value problem, that is, to find the
shortest path between two fixed endpoints.

Mitchell et al. [8] proved that the general form of a shortest
geodesic path γ was an alternating sequence of vertices and (pos-
sibly empty) edges. The unfolded image of the path along any edge
sequence is a straight line segment, and the curve angle of any ver-
tex which γ passes through is greater than or equal to π . As Fig. 1
shows, when a shortest geodesic path γ passes through a saddle
vertex (whose curve angle is more than 2π ), γ splits into multiple
outgoing geodesic paths. Therefore, the shortest geodesic paths, al-
though well defined, are not able to solve the initial value problem
of discrete geodesics, which aims at finding the unique geodesic
path from a fixed point and in a given tangent direction.

In this paper, we present a method for solving the initial value
problem on trianglemeshes. To ensure a unique solution, we adopt
an indirect strategy. Given a fixedpoint and an initial tangent direc-
tion on a triangle meshM , we first compute a geodesic curveγ on
a piecewise smooth surface M , which well approximates the input
meshM and can be constructed at little cost. Then, we solve a first-
order ODE of the tangent vector by the fourth-order Runge–Kutta
method, and parallel transport it alongγ . When the geodesic curve
reaches the boundary of the current patch, its tangent vector can
be directly transported to the neighboring patch, thanks to the G1-
continuity along the common boundary of two adjacent patches.
Finally, once the geodesic curve γ is available, we project it onto
the underlying mesh M , producing the discrete geodesic path γ ,
which is guaranteed to be unique on the trianglemeshM . See Fig. 2.

It is worth noting that our method is different from the
conventional methods of directly solving the geodesic equation
(i.e., a second-order ODE of the position) on the piecewise smooth
surface, which are tedious and difficult to implement, due to the
complicated representation of the geodesic equation involving
Christoffel symbols. Based on the first-order ODE of the tangent
vector, the proposed method is intuitive and easy to implement.
We observe that our method is particularly useful for computing
geodesic paths on low-resolutionmeshes with large and/or skinny
triangles, where the conventional straightest geodesic paths are
usually far from the ground truth. In addition, our method can be
easily adapted to work on non-orientable surfaces.

1 If the numerical computation is exact, the computed geodesic distance is also
exact.

Fig. 2. Our method solves the initial value problem of discrete geodesics. For
each point (in red) on the Rhino model, we compute geodesic paths in 60 tangent
directions,which are evenly sampled on the tangent plane. Each tangent direction is
guaranteed to produce a unique geodesic path on the triangle mesh. Our method is
numerically stable and works well on meshes with large and/or skinny triangles.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

2. Related work

This section presents the related work on computing geodesic
paths on discrete domains and discrete differential geometry.
As mentioned above, discrete geodesic paths are fundamentally
different from geodesics on smooth surfaces, since the shortest
geodesics and the straightest geodesics are not equivalent to each
other any longer.

Shortest geodesics have been extensively studied and also
widely used in computer graphics community. Existing methods
for computing exact shortest geodesic paths onpolyhedral surfaces
can be generally grouped into two categories, namely, theMMP al-
gorithm and the CH algorithm. Both methods are developed based
on the continuous Dijkstra’s algorithm, that iteratively propagates
the discrete wavefront from the source to the destination. They
differ in the wavefront organization and propagation scheme. The
MMP algorithm has an O(n2 log n) time complexity and an O(n2)
space complexity for a mesh with n vertices. The CH algorithm
runs in O(n2) time and takes O(n) space. Different extensions on
the two algorithms have been developed, which aim at paralleliza-
tion [14], performance improvement [15–18] and robustness [19],
computing geodesic offsets [20,21], geodesic loops [22], and all-
pairs geodesics [23].

Straightest geodesics receives relatively less attention than
shortest geodesics. Polthier and Schmies [24] introduced the dis-
crete geodesic curvature and defined the straightest geodesic on
polyhedral surface as a path that has equal curve angle on both
sides at each point. Then, they proposed the geodesic Eulermethod
and the geodesic Runge–Kutta method for integrating a given vec-
tor field on a surface. Polthier and Schmies also developed the
geodesic flow method [25] to compute the evolution of the front
of a point wave on a polyhedral surface. At each time step, the
front is a topological circle on the surface [26], where each point
moves a constant distance in orthogonal direction to the curve
by the straightest geodesic path. Kumar et al. [27] observed that
the straightest geodesic obtained by tracing the path with equal
left and right curve angles was far from the correct geodesic curve
on the smooth surface. Therefore, they proposed a sectional plane
method, which takes into account the variation of the tessella-
tion normal along the geodesic path. Kumar et al.’s method can
be considered as an extrinsic Euler method, which solves the
geodesic equation with the first-order approximation. Therefore,
their method tends to suffer from serious numerical issue and
may deviate from the true geodesic curve after only a few iter-
ations. Based on the fast marching method and the straightest
geodesic [24], Martinez et al. [28] proposed an iterative algorithm
for computing the shortest path between two fixed points.
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