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h i g h l i g h t s

• We propose a 2D convex hull algorithm based on comparison operators.
• We propose a 2D convex hull algorithm that outperforms Quickhull.
• We propose a 2D non-convex hull algorithm.
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a b s t r a c t

Computing the convex hull of a set of points is a fundamental operation in many research fields,
including geometric computing, computer graphics, computer vision, robotics, and so forth. This problem
is particularly challenging when the number of points goes beyond some millions. In this article, we
describe a very fast algorithm that copes with millions of points in a short period of time without
using any kind of parallel computing. This has been made possible because the algorithm reduces to a
sorting problem of the input point set, what dramatically minimizes the geometric computations (e.g.,
angles, distances, and so forth) that are typical in other algorithms. When compared with popular convex
hull algorithms (namely, Graham’s scan, Andrew’s monotone chain, Jarvis’ gift wrapping, Chan’s, and
Quickhull), our algorithm is capable of generating the convex hull of a point set in the plane much faster
than those five algorithms without penalties in memory space.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The convex hull H(P ) of a planar point set P can be defined
as the smallest convex polygon that encloses P . Every point of
P belonging to the boundary of H(P ) is called an extreme vertex.
The notion of convex hull is considered by many as one of the
most fundamental geometric structures we find in computational
geometry, computer graphics, robotics, etc. [1]. In fact, important
problems in computational geometry like Delaunay triangulation,
Voronoi diagrams, halfsapce intersection, etc. can be reduced to the
problem of computing the convex hull of a set of points [2].

Besides, the problem of finding the convex hull crosses many
research domains and applies to an endless number of problems
and situations. For example, convex hulls play an important role
in computer vision [3], pattern recognition [4,5], visual pattern
matching [6], operations research [7], path planning and obstacle
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avoidance in robotics [8,9], astronomy [10,11], and biology and ge-
netics [12], just to mention a few of them.

The remainder of the paper is organized as follows. Section 2
overviews the prior work on convex hull algorithms. Section 3 de-
scribes the TORCH (Total Order-Based Convex Hull) algorithm step
by step. Section 4 carries out the complexity analysis of the TORCH
algorithm. Section 5 compares the TORCH algorithm to other well-
known convex hull algorithm with reference to both arbitrary and
definite sets of points in the plane. Section 6 concludes the paper,
with some hints for future work.

2. Related work

According to Avis et al. [13], the convex hull algorithms fall into
two categories: graph traversal and incremental. Graham scan [14],
Jarvis march [15] and monotone chain [16] are representatives of
graph traversal algorithms. In the graph traversal algorithms, the
input points work as vertices of a graph whose edges are formed
temporarily to check whether two connected edges are convex or
not. For example, Graham scan uses the angle between two con-
nected edges to decide about the convexity on the shared vertex.
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Fig. 1. The algorithm steps: (a) set of 40 points P sorted along x in the domain D = [0, 100] × [0, 100]; (b) west and east poles found (dotted circles); (c) south and north
poles found (dotted circles); (d) lateral hulls: HSW in blue, HSE in magenta, HNE in cyan, and HNW in red; (e) approximate convex hull A in blue after connecting lateral hulls
counterclockwise; (f) convex hull H after discarding concave vertices of A. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Incremental algorithms start from an initial convex hull (e.g., a
triangle), checking then whether each of the remaining points
belongs to the current convex hull or not. If any of these remaining
points is outside the current convex hull, then the convex hull
is updated accordingly. Quickhull [17], divide-and-conquer [1]
and incremental [18] algorithms are some representatives of this
category.

The convex algorithm proposed in this article, called total order
heuristic-based convex hull (TORCH) algorithm, is in its essence a
sorting algorithm, being its geometric computations reduced to a
minimum. As a result of such a sorting procedure we immediately
obtain an approximate convex hull (i.e., a non-convex hull) that
contains all the extreme vertices of convex hull and a few concave
vertices. The last stage of the algorithm consists in discarding
those concave vertices from the approximate convex hull using the
geometric operation CCW that is employed in Andrew’s monotone
chain. Our algorithmwas designed for serial computing, so that we
do not use any GPU resources or other parallel resources in any
way. The main contribution of the TORCH algorithm lies in the use
of comparison operators to build up the convex hull from the four
extremal points. Besides, TORCH outperforms Quickhull, which
likely is the fastest amongst the currently known algorithms.

3. The algorithm

The general idea of the algorithm is that a convex hull is like
a 2-dimensional ball (or circle), and as every single 2-dimensional
ball it has four turning points or poles, that is, west, east, south
and north. The west pole is the leftmost point, the east pole is the
rightmost point, the south pole is the bottommost point, and the

north pole is the topmost point. This is similar to the computation
of the elimination quadrangle of the Quickhull algorithm (cf. [17]),
whose vertices are precisely those poles.

The algorithm proposed in the present article distinguishes
from others, including Andrew’s and Quickhull, in themanner how
the four hulls between the turning points (or poles) are calculated.
In general terms, and after allocating memory for input points, our
algorithm consists of the following steps:

(1) Sort the point set in the x-direction of the domain (Fig. 1(a)).
(2) Find the leftmost and rightmost points (inside dotted circles)

shown in Fig. 1(b).
(3) Find the bottommost and topmost points (inside dotted circles)

shown in Fig. 1(c).
(4) Find the four lateral hulls between turning points (Fig. 1(d)).
(5) Construct approximate convex hull (in blue) by merging the

four lateral hulls (Fig. 1(e)).
(6) Inflate the approximate convex hull towards the convex hull

in black (Fig. 1(f)). This inflating operation is also called here
convexification.

Let us then describe these steps of the algorithm in more detail
in the following subsections.

3.1. Sorting points

After allocating the entire set P = {pi}i=0,...,k−1 of input points
in a 1-dimensional array, we proceed to their lexicographical
sorting in the x-direction, as in Andrew’s algorithm [16]. This
results in a sorted array P. For this purpose, we have adopted
the introspective sort (or introsort) algorithm due to Musser [19],



Download English Version:

https://daneshyari.com/en/article/440004

Download Persian Version:

https://daneshyari.com/article/440004

Daneshyari.com

https://daneshyari.com/en/article/440004
https://daneshyari.com/article/440004
https://daneshyari.com

