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h i g h l i g h t s

• A new re-parameterization for reducing and unlocking irreducible geometric systems.
• No need for the values of the key unknowns and no limit on their number.
• Enabling the usage of decomposition methods on irreducible re-parameterized systems.
• Usage at the lowest linear Algebra level and significant performance improvement.
• Benefits for numerous solvers (Newton–Raphson, homotopy, p-adic methods, etc.)
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a b s t r a c t

You recklessly told your boss that solving a non-linear system of size n (n unknowns and n equations)
requires a time proportional to n, as you were not very attentive during algorithmic complexity lectures.
So now, you have only one night to solve a problem of big size (e.g., 1000 equations/unknowns), otherwise
you will be fired in the next morning. The system is well-constrained and structurally irreducible: it
does not contain any strictly smaller well-constrained subsystems. Its size is big, so the Newton–Raphson
method is too slow and impractical. The most frustrating thing is that if you knew the values of a small
number k ≪ n of key unknowns, then the system would be reducible to small square subsystems and
easily solved. You wonder if it would be possible to exploit this reducibility, even without knowing the
values of these few key unknowns. This article shows that it is indeed possible. This is done at the lowest
level, at the linear algebra routines level, so that numerous solvers (Newton–Raphson, homotopy, and
also p-adic methods relying on Hensel lifting) widely involved in geometric constraint solving and CAD
applications can benefit from this decomposition with minor modifications. For instance, with k ≪ n
key unknowns, the cost of a Newton iteration becomes O(kn2) instead of O(n3). Several experiments
showing a significant performance gain of our re-parameterization technique are reported in this paper
to consolidate our theoretical findings and to motivate its practical usage for bigger systems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Geometric modeling by constraints [1–7] leads to large systems
of non-linear (algebraic most of the time) equations. In their
seminal work, Gao et al. [8] automatically generated all the
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possible irreducible and structurally well-constrained 3D systems
of geometric constraints (which they called basic configurations)
that involve up to six geometric primitives (points, lines, and
planes). These basic configurations correspond to 3D sub-problems
that often occur in geometric constraint solving problems, in
variational modeling, or in CAD/CAM applications. Most of the
time, and contrarily to the 2D case, there is no closed-form solution
for such 3D basic configurations. Gao et al. proposed the Locus
Intersection Method (LIM) for solving these basic configurations
and showed that among these possible 683 systems, 614 ones
can be solved by using one key unknown (also called the driving
parameter), while solving the remaining 69 ones requires two key
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unknowns. They referred to these two re-parameterization solving
methods as LIM1 and LIM2.

Re-parameterization consists in identifying or introducing a
small number of key unknowns, also called parameters in the lit-
erature (hence the re-parameterization term), which have the fol-
lowing property: ‘‘if the values of these key unknowns were known,
then the system would be reducible to much smaller structurally irre-
ducible subsystems and thus it would be easily solved’’.

The work presented in [9] relied on properties of bipartite
graphs underlying systems of equations, to polynomially decom-
pose large systems into well-, over-, and under-constrained sub-
systems. The same paper [9] also proposed an efficient method
to decompose or reduce well-constrained systems into irreducible
and well-constrained (having as many equations as unknowns)
subsystems. These decompositions have considerably speeded-up
the solving process, and also allowed debugging systems of con-
straints in a constraint programming context. However, the reduc-
tion methods proposed in [9] have limitations. For instance, they
do not apply to re-parameterized systems proposed in [8,10–12].
This inability to reduce re-parameterized systems is due to the
fact that the methods of [9] are unable to reduce irreducible sys-
tems, and that re-parameterized systems are irreducible. Later on,
after the locus intersection method of Gao et al. [8] became pop-
ular, several techniques for the decomposition of geometric sys-
tems with re-parameterization have been proposed [12,10,11].
These methods decompose well-constrained 3D systems into re-
parameterized subsystems with a small set of key unknowns per
subsystem, perform in polynomial time, and provide sub-optimal
but good results.

In spite of the breakthrough made by the re-parameterization
technique and the aforementioned methods seeking to find small
sets of key unknowns, there are two major limitations. First of all,
since re-parameterized systems are irreducible, the decomposition
methods proposed in [9] cannot apply to them. Second, with ba-
sic configurations involving more than six geometric primitives or
for systems of geometric constraints involving more complex geo-
metric primitives (cylinders, spheres, cones, tori, etc.), using one or
two key unknowns is not enough, even when employing the best
re-parameterization techniques known so far [12]. In other words,
although LIM1 (Locus Intersectionmethodwith one key unknown)
is very fast and simple, its variants LIMk (Locus Intersection meth-
ods involving k ≥ 2 key unknowns) becomemuch less convenient.
Contribution. Our work addresses the aforementioned major
limitations of re-parameterization/decomposition techniques. It
proposes a technique for efficiently reducing or unlocking irre-
ducible re-parameterized systemsof equations like those proposed
in [8,10–12] and resulting from geometric constraint systems
and geometric modeling applications, so that the decomposition
methods proposed in [9], which were unable to reduce such re-
parameterized irreducible systems, become applicable. Further-
more, this work shows that it is possible to benefit from these
decomposition techniques even when the values of the key un-
knowns are not known and the number of these key unknowns
k is greater than 2. For this purpose, we propose to exploit
re-parameterization at the lowest level, which is the level of the
underlying linear algebra routines: solving a linear system or in-
verting a matrix. The focus on the lowest level for exploiting
re-parameterization is not hazardous. It is pertinent and highly
motivated by the fact that most existing solvers, like New-
ton–Raphson or homotopy rely on the aforementioned low-level
linear algebra routines. Consequently, this level seems to be the
best place to exploit re-parameterization. Although, doing so does
not prevent using re-parameterization at some higher level.

Our paper focuses on exploiting the re-parameterization tech-
nique for reducing and thus efficiently solving well-constrained
irreducible re-parameterized systems which are determined in

advance and for which the key unknowns or parameters (even if
their values are unknown) are already identified. It does not seek
to find the best decomposition or re-parameterization of a system,
a problem that has already been investigated in the literature [12]
(cf. Section 10).

Although this paper focuses on solving well-constrained
irreducible re-parameterized systems of equations and not on
directly solving (under-constrained) geometric constraint systems
involved in geometric modeling, the latter easily translate into
well-constrained systemsof equationswhich are perfectly handled
by our technique. For instance, all the basic configurations
enumerated in [8] can be solved by our technique which goes
beyond the locus intersectionmethod as the latter is limited to one
or two key unknowns, while we do not have such limitation. Other
examples of geometric constraint systems can be found in [12],
while the particular case of the pentahedron problem and the
way it is more efficiently solved through re-parameterization are
discussed in Section 8.

The rest of this paper is organized as follows: we first introduce
the re-parameterization technique in Section 2 through examples,
with a particular emphasis on the LIM involving one parameter.
In Section 3, we briefly present matching theory and show how
combinatorial decomposition methods are applied in order to
improve the performance of linear algebra routines. After that, we
show in Section 4 how decomposition speeds-up linear algebra
routines. In Section 5, we show how re-parameterization speeds-
up linear algebra routines for re-parameterized systems, so that
Newton and homotopy methods can straightforwardly benefit
from re-parameterization. This section also draws a complexity
study. Section 6 explains how Hensel lifting in p-adic methods
can take advantage of re-parameterization as well. This is an
important result as it shows that not only numerical analysis, but
symbolic computations, like Gröbner bases, may also benefit from
re-parameterization. Section 7 shows that interval solversmay also
benefit from re-parameterization, however the wrapping effect
requires further research. Section 8 presents an experimental
study of the performance of our re-parameterization technique at
the lowest level of linear algebra routines involved in numerous
solvers (Newton–Raphson, homotopy, and also p-adic methods
relying on Hensel lifting) and shows an important speed-up. This
section also presents a CAD example showing the benefits of
our re-parameterization technique when applied to geometric
constraint systems. Section 9 examines the issues of using re-
parameterization at a higher level. Finally, Section 10 presents
future works and open questions before Section 11 concludes the
paper.

2. Understanding re-parameterization

In this section, we first illustrate the re-parameterization
technique by means of two examples in 2D and 3D.

2.1. A trivial 2D example

Fig. 1 depicts a system of geometric constraints in 2D. For this
system, the lengths of all the edges are given. It is easy to see
that this system is under-constrained because it involves twelve
unknowns (2D coordinates of its six vertices) and nine (distance)
constraints. To make this system well-constrained, we employ
placement rules commonly used in the literature, to constrain
the placement of a particular subset of a geometric system [13],
and transform it into a well-constrained system, without affecting
the set of possible solutions. For our 2D system, we fix three
coordinates in 2D, which is equivalent to fixing the positions of the
three points of one triangle, say A′B′C ′. Point A′(xA′ = 0, yA′ = 0)
is placed at the coordinates origin, point B′(xB′ > 0, yB′ = 0) is
placed on the positive x-axis, and point C ′(xC ′ , yC ′ > 0) is placed in
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