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a  b  s  t  r  a  c  t

Seasonal  patterns  in  factors  that  affect  primary  producers  are  an  important  part  of  defining  the  structure
and  function  of  aquatic  ecosystems.  However,  defining  seasonality  is  often  more  difficult  in aquatic  than
in  terrestrial  ecosystems,  particularly  in  subtropical  and  tropical  environments.  In this  study,  a  long-term
data  set  for  a shallow  subtropical  lake  (Lake  George,  Florida,  USA)  was used  to  investigate  seasonality
using  a  range  of physical,  chemical  and  hydrological  parameters.  K-means  cluster  analysis  of  monthly
averages  among  11  selected  environmental  factors  across  18  years  suggested  the  overall  annual  pattern
consists  of  three  different  seasonal  clusters:  a cold  season  (January–April),  a warm  season  (May–August)
and  a flushing  season  (September–December).  High  dissolved  oxygen  and  increased  Secchi  depth  are
key  features  of  the cold  season,  while  the  warm  season  is  characterized  by high mean  light  irradiances,
temperature,  rainfalls,  total  nitrogen  and  phytoplankton  biomass  (as  chlorophyll  a  level).  The  flushing
season  is  characterized  by  high  river  discharge  rates  and  high  levels  of  dissolved  nutrients  and  colored
organic  matter.  Multiple  response  permutation  procedures  indicated  that  these  seasonal  cluster  arrange-
ments  were  significantly  different  than  randomly  permuted  clusters  (A-statistics  =  0.3314,  significance
of  delta  = 0.0160,  based  on  1000 permutations).  Results  from  principal  component  analyses  supported
the  presence  of  the  three  seasons  in the  lake.  Linear  models  explaining  chlorophyll  a levels  using  the
3-season  system  generally  indicated  better  ratios  of  explained  variance  compared  to  the  models  without
seasonal  alignments,  further  indicating  that  even  for  sub-tropical  systems  defining  seasons  provides  a
better understanding  of  phytoplankton  dynamics.  The  approaches  used  in  this  study  provide  statistically-
based  multivariate  tools  for the  definition  of  seasonality  in  aquatic  ecosystems.  The ability  to  accurately
define  seasons  is a key step  in  modeling  the  structure  and  dynamics  of  aquatic  ecosystem,  which  is
essential  to  the development  of  effective  management  strategies  in  a  rapidly  changing  world.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Over the past century, the integrity of an increasing num-
ber of aquatic ecosystems around the world has been challenged
by human activities, such as cultural eutrophication and altered
hydrologic regimes (Nixon, 1995; Cloern and Jassby, 2010). There
is also a growing consensus that increases in greenhouse gases of
human origin will lead to future shifts in climatic regimes (Edwards
and Richardson, 2004; Winder and Schindler, 2004a; Winder and
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Schindler, 2004b; Thackeray et al., 2008). These environmental
challenges have complicated the task of managing aquatic ecosys-
tems. In order to effectively manage aquatic ecosystems, it is
important to understand their structure, function and responses
to changes in the environment, such as eutrophication, and shifts
in climatic and hydrologic conditions. In the case of defining
the responses of primary producer populations to environmen-
tal changes, these factors play particularly important roles (Smith
et al., 1999; Falkowski and Oliver, 2007; Paerl and Huisman, 2008;
Kratina et al., 2012) because they can impact a wide range of drivers
for phytoplankton dynamics, such as nutrient availability, tempera-
ture, and hydrologic conditions (e.g. flushing rates, water residence
times and vertical mixing). Statistical and modeling approaches are
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often used to help define and even predict responses of primary
producers to environmental changes, particularly as they relate
to potentially ecosystem disruptive effects, such as harmful algae
blooms (Braak and Verdonschot, 1995; Brink et al., 2009; Beck and
Hagy, 2015; Rigosi et al., 2015).

One of the challenges in using statistical and modeling
approaches to define responses of primary producers to envi-
ronmental change is the ability to account for seasonal shifts
in driving factors. Definitions of seasonality are often based on
one or two variables, most commonly temperature and incident
solar irradiance (Trenberth, 1983; Berger et al., 2010). In the case
of terrestrial plant communities at higher latitudes, there is a
strong link between seasonality of plant communities and tem-
perature and photoperiod, thereby facilitating the categorization
of seasons (Jolly et al., 2005). By contrast, planktonic communi-
ties often exhibit high species diversity, short generation times,
and can respond quickly to a wide range of environmental condi-
tions, thereby complicating the task of defining seasonality. This is
demonstrated by the results of a recent study (Winder and Cloern,
2010) that showed a lack of clearly definable seasonal trends in phy-
toplankton biomass in over 30% of the time series examined across
over 100 freshwater and marine ecosystems. It is widely recog-
nized that more factors than incident irradiance and temperature
can play important roles in controlling phytoplankton production,
and should be included in defining seasonal categorization, such as
hydrologic conditions, nutrient concentrations and the presence of
light attenuating substances in the water column (Canfield et al.,
1989; Agusti et al., 1990; Phlips et al., 2007; Srifa et al., 2016).

The central goal of this study was to define seasonality using
multivariate statistical tools to incorporate a wide range of
important physical, chemical and biological variables. Multivariate
methods are recognized as powerful tools in the study of multi-
dimensional observations in a wide range of disciplines including
ecological sciences (Rencher, 2002; Everitt and Hothorn, 2011).
Unlike contemporary univariate statistical analyses, many multi-
variate techniques do not require restrictive assumptions (Basille
et al., 2013), and can be used to explore data without presumptive
hypotheses (Everitt and Hothorn, 2011).

In this paper, we examine the use of two multivariate statisti-
cal approaches, i.e. K-means cluster analysis (KMCA) and principal
component analysis (PCA), to define seasonality in a large subtrop-
ical lake, i.e. Lake George in Florida, USA. An eighteen-year data
set for Lake George, including 17 key environmental parameters,
provided an opportunity to incorporate a wide range of climatic
regimes (e.g. drought and flood conditions) into the analyses. We
hypothesized that the inclusion of a diverse range of parameters
and conditional states into the definition of seasons would yield
valuable insights into temporal variability of driving factors for
phytoplankton dynamics.

2. Materials and methods

2.1. Site description

Lake George (Fig. 1) is located in Volusia County, Florida, United
States. The lake is a part of the Lower St. Johns River that flows
from south to north and empties into the Atlantic Ocean 173 km
downstream. The lake is large (190 km2 in surface area), shallow
(mean depth of 2.8 m),  subtropical (latitude 29◦N) and located on
a shallow-gradient basin, which results in relatively long water
residence time and slow turnover rates (Phlips et al., 2007). The
shallowness of the lake results in largely polymictic conditions
(Brenner et al., 1990). The lake is eutrophic and regularly expe-
riences blooms of cyanobacteria (Hendrickson et al., 2003; Phlips
et al., 2007).

The primary sampling site in this study (i.e. LG) was  located in
the northern reach of Lake George where the lake discharges into
the lower St. Johns River. The site location was chosen to represent
a summation of processes within the lake before discharge down-
stream into lower St. Johns River Basin. The average depth at the
sampling site was  2.1 m (N = 192).

2.2. Data set and water analyses

The long-term data set used in this study was obtained
from the St. Johns River Water Management District (sjr-
wmd.com/hydrologicdata/waterquality) for the site in Lake George.
The data set was  comprised of water quality and physical data
from September 1993–December 2010. Most samples were taken
monthly, but there were periods in some winter months when
water samples were taken every 2 months, and some summer
months in 2009–2010 when samples were taken twice a month. In
such cases mean values were calculated from over-flanking months
or within a month, respectively, to balance the data set for spectral
density analysis.

Water samples were taken with a 3.0 m vertical integrating sam-
pler that evenly captured water from the surface to approximately
0.1 m above the sediment. Aliquots of water samples were ana-
lyzed for pheophytin-corrected chlorophyll a (Chl a), color, nitrate
and nitrite-nitrogen (NOx-N), ammonium nitrogen (NH4-N), total
nitrogen (TN), total phosphorus (TP), soluble reactive phosphorus
(SRP), dissolved organic carbon (DOC) and silica. Dissolved inor-
ganic nitrogen (DIN) was  assumed to be the summation of NOx-N
and NH4-N concentrations. Preparations and analyses methods for
all water chemistry parameters were according to the Standard
Method (American Public Health Association et al., 1992).

Water temperature (WTemp), dissolved oxygen (DO) and Secchi
depth (SD) were measured on-site with a YSI or a Hydrolab mul-
tiprobe and a Secchi disk. Turbidity was determined by a LaMotte
turbidimeter from water taken back to the lab.

2.3. Hydrological and meteorological data

Monthly rainfall totals for the study period were obtained from
the National Climatic Data Center of the National Oceanic and
Atmospheric Administration (NOAA) for the Crescent City, FL Mete-
orological Station (29.43333◦N, 81.51667◦W)  (ncdc.noaa.gov/cdo-
web), located approximately 10 km northeast of the sampling site.
The discharge rates from the upper St. Johns River into Lake George
were obtained from the United States Geological Survey river gauge
monitoring site at Astor, Florida (waterdata.usgs.gov). Monthly
average discharge rates were calculated from the mean daily aver-
ages. Missing monthly discharge rates from January–July 2001 were
substituted by overall monthly averages across the 18-year span for
the data.

2.4. Estimations for light availability

Mean light intensity in the mixed layer (Im) was indirectly cal-
culated from SD by using the Beer–Lambert’s relationship:

Im = I0
(Kt) (Zm)

{
1 − e[−(Kt )(Zm)]

}

The mean daily surface PAR incident irradiance (I0) was  calcu-
lated from mean daily irradiance at latitude 30◦N on a monthly
basis (Oswald and Gotaas 1957), assuming cloudless conditions.
The extinction coefficient (Kt) was estimated as 1.7 divided by the
Secchi depth (SD−1), and the depth of mixed layer (Zm) was assumed
to be equal to the depth of sampling site (z) due to the shallowness
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