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a b s t r a c t

We investigate the performance of various discrete Hodge star operators for discrete exterior calculus
(DEC) using circumcentric and barycentric dual meshes. The performance is evaluated through the DEC
solution of Darcy and incompressible Navier–Stokes flows over surfaces. While the circumcentric Hodge
operators may be favorable due to their diagonal structure, the barycentric (geometric) and the Galerkin
Hodge operators have the advantage of admitting arbitrary simplicial meshes. Numerical experiments
reveal that the barycentric and the Galerkin Hodge operators retain the numerical convergence order
attained through the circumcentric (diagonal) Hodge operators. Furthermore, when the barycentric or the
GalerkinHodge operators are employed, a super-convergence behavior is observed for the incompressible
flow solution over unstructured simplicial surface meshes generated by successive subdivision of coarser
meshes. Insofar as the computational cost is concerned, the Darcy flow solutions exhibit a moderate
increase in the solution time when using the barycentric or the Galerkin Hodge operators due to a
modest decrease in the linear system sparsity. On the other hand, for the incompressible flow simulations,
both the solution time and the linear system sparsity do not change for either the circumcentric or the
barycentric and the Galerkin Hodge operators.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete exterior calculus (DEC) is a paradigm for the numer-
ical solution of partial differential equations (PDEs) on simplicial
meshes [1,2]. A main advantage of DEC is the mimetic behavior of
its discrete operators where they retain at the discrete level many
of the identities/rules of their smooth counterparts. Over the past
decade, DEC was used to numerically solve many physical prob-
lems including Darcy [3,4] and incompressible flows [5–7]. The
mimetic behavior of the DEC discrete operators generally results
in superior conservation properties for DEC discretizations. There
also exist other numerical methods to discretize vector PDEs on
surfaces that are not based on DEC [8–12].

The definition of most DEC operators requires a dual mesh re-
lated to the primal simplicial mesh. A common choice for the dual
mesh is the circumcentric dual. The mutual orthogonality of the
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primal simplices and their circumcentric duals results in simple ex-
pressions for the discrete Hodge star operators. However, using the
circumcentric dual limits DEC to only Delaunay simplicial meshes.
In the case of non-Delaunay meshes, DEC implementations using
the circumcentric dual along with the diagonal Hodge star defini-
tion yield incorrect numerical results [13]. Enabling DEC to handle
arbitrary simplicial meshes is advantageous not only due to the ex-
tra flexibility in mesh generation but also due to significantly fa-
cilitating any subsequent local/adaptive mesh subdivision. This is
important considering that successive subdivision of a Delaunay
triangulation with obtuse-angled triangles would result in a non-
Delaunay mesh.

An alternative choice for the dual mesh is the barycentric dual.
Since the barycenter of a simplex always lies in its interior (un-
like circumcenters), the dual barycentric cells are always non-
overlapping for arbitrary simplicial meshes. However, the orthog-
onality between the primal and dual mesh objects that character-
ized the circumcentric dual is no longer valid for the barycentric
dual. This implies that the DEC operators involving metrics may
need to be redefined. For DEC applications over surface simplicial
meshes, it becomes essential to redefine theHodge star operator∗1
and its inverse∗

−1
1 . Twoprevious discrete definitions forHodge op-

erators on general simplicial meshes are the Galerkin [14] and the
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geometrical barycentric-based [15,16] definitions. By barycentric-
based definitions here wemean the Hodge star definitions that are
applicablewhen abarycentric dualmesh is employed. Both the two
aforementioned definitions result in a sparse (but non-diagonal)
matrix representation for the Hodge star operator ∗1. Such a non-
diagonal matrix structure further complicates the representation
of the inverse operator ∗

−1
1 . However, it is worth pointing out that

on surface simplicial meshes, the DEC discretization of common
partial differential equations; e.g. Poisson equation and incom-
pressible Navier–Stokes equations,may not require the inverse op-
erator ∗

−1
1 . An alternative approach for dealing with non-Delaunay

meshes, for the specific case of a scalar Laplacian, is through the in-
trinsic Delaunay triangulation [17].

The purpose of this study is to evaluate the performance of
the barycentric-based and the Galerkin Hodge operators compared
with the circumcentric (diagonal) Hodge star operator. The com-
parison is carried out through the DEC discretization of Darcy and
incompressible Navier–Stokes flows over surfaces. The main dif-
ferences between the circumcentric versus the barycentric dual
meshes are first addressed in Section 2. The definitions of vari-
ous Hodge star operators are then provided in Section 3. This is
followed by numerical experiments for Darcy flow and incom-
pressible Navier–Stokes equations in Section 4, demonstrating
the behavior of the considered Hodge star operators. The results
demonstrate the numerical convergence as well as the linear sys-
tem sparsity and the computational cost for the various opera-
tors definitions considered during the current study. The paper
closes with conclusions emphasizing the main observations and
discussing related future insights.

2. Circumcentric versus barycentric dual meshes

Consider a domain Ω approximated with the simplicial com-
plex K . This paper focuses only on simplicial meshes over
flat/curved surfaces, and therefore the domain is considered to
have a dimension N = 2. A k-simplex σ k

∈ K is defined by the
nodes vi forming it as σ k

= [v0, . . . , vk]. The definition of many
DEC discrete operators requires the dual complex ⋆K defined over
the primal simplicial complex K . The dual to a primal simplex σ k

is the (N − k)-cell denoted by ⋆σ k
∈ ⋆K . The top dimensional k-

simplices/cells are consistently oriented; e.g. counterclockwise, in
all our examples here.

Defined on the primal and dual mesh complexes are the spaces
of the discrete k-forms denoted by Ck(K) and Dk(⋆K), respectively.
For N = 2, the spaces of the discrete forms are related via
the discrete exterior derivative dk and the discrete Hodge star ∗k
operators as shown in the following diagram

(1)

where the superscript T indicates the matrix transpose.
A common choice for the dual complex is the circumcentric

dual. This choice is motivated by the orthogonality between the
primal and dual mesh objects, which simplifies the discrete Hodge
star operators definitions. For example, for a smooth 1-form u, the
orthogonality of the primal edge σ 1 and its dual ⋆σ 1 makes the
component of u evaluated along σ 1 equal to the component of
∗u evaluated along ⋆σ 1. This results globally in a diagonal matrix
representation for the discrete Hodge star operator ∗1 and also its
inverse ∗

−1
1 , simplifying various DEC computations.

Although the circumcentric duality yields this simplicity in the
discrete Hodge star representation, this dual works correctly only
onDelaunaymeshes. Fig. 1(a) shows a sample non-Delaunaymesh.
While the dual edges are, by the current convention, oriented

Fig. 1. Sketch for a sample non-Delaunay mesh with: (a) the circumcentric dual,
and (b) the barycentric dual. The primal mesh is in black color and the dual mesh
is in red color. cijk and bijk are the circumcenter and barycenter of the triangle
[vi, vj, vk], respectively. cij and bij are the circumcenter and barycenter of the edge
[vi, vj], respectively.

90° counterclockwise with respect to their primal edges, the dual
to the primal edge [v1, v2] is oriented in the opposite direction. This
is due to the circumcenters of the neighboring triangles being in
the reversed order. According to the notation in [13], this implies
that the dual edge ⋆[v1, v2] has a negative volume. An additional
concern is the construction of the dual areas. For a non-Delaunay
mesh, the circumcentric dual areas overlap with some of the areas
sectors having negatively-signed volumes. For example, for the
mesh in Fig. 1(a), the areas dual to the primal nodes v0 and v3 are
overlapping; i.e. ⋆v0 ∩ ⋆v3 ≠ ∅. In addition, for the area dual to the
node v1, the part of ⋆v1 that does not overlapwith ⋆v0 and ⋆v3 has a
positive volume, while the part that overlaps with ⋆v0 and ⋆v3 has
a negative volume, according to the volume calculation convention
defined in [13]. Previous analysis showed that the DEC numerical
solution of Poisson equation over a non-Delaunay mesh, using the
diagonal definition of the Hodge star operator, leads to incorrect
results [13].

An alternative choice for the dual mesh is the barycentric dual
which is well defined on arbitrary simplicial meshes, as illustrated
in Fig. 1(b). The dual to a primal triangle is its barycenter, the dual
to a primal edge is the kinked line connecting the barycenters of
the two neighboring triangles through the barycenter of the primal
edge itself, and the dual to a primal node is the polygonal area
formed by the duals of the primal edges connected to the primal
node. Since the barycenter of each triangle is always in its interior,
the dual barycentric cells do not overlap for arbitrary simplicial
meshes. On the other hand, it is evident from Fig. 1 that the main
difference between the circumcentric and the barycentric duals
is the lack of mutual orthogonality between the primal and dual
edges in the case of the barycentric dual.

The lack of orthogonality between the primal edges and
their barycentric duals invalidates the diagonal representation
of some Hodge star operators. This can be illustrated through
numerical DEC experiments using the diagonal Hodge star
operator constructed using a barycentric dual mesh. Fig. 2 shows
the L2 norm error for the Darcy flow and the incompressible
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