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We study the dimension of trivariate C1 splines on bipyramid cells, that is, cells with n + 2
boundary vertices, n of which are coplanar with the interior vertex. We improve the earlier 
lower bound on the dimension given by J. Shan. Moreover, we derive a new upper bound 
that is equal to the known lower bound in most cases. In the remaining cases, our upper 
bound is close to the known lower bound, and we conjecture that the dimension coincides 
with the upper bound. We use tools from both algebraic geometry and Bernstein–Bézier 
analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Smooth piecewise polynomial functions, or splines, are used widely in approximation theory, computer aided geometric 
design, image analysis, and numerical analysis. Key tools for analyzing multivariate spline spaces come from two fields: clas-
sical approximation theory and applied algebraic geometry. The two fields and the two corresponding research communities 
use entirely different approaches: Bernstein–Bézier analysis (see the survey of Alfeld, 2016, in this issue) and homologi-
cal techniques (see the survey of Schenck, 2016, in this issue). For a full treatise on Bernstein–Bézier analysis, we refer 
the reader to Lai and Schumaker (2007). The homological approach to multivariate splines is explained in several papers, 
see Mourrain and Villamizar (2014), Schenck and Stilman (1997) and Billera (1988).

In this paper we are concerned with trivariate splines. Let Pd denote the set of polynomials in three variables of de-
gree ≤ d. A spline is a piecewise-polynomial function defined on a domain � ⊂ R

3 that belongs to a certain smoothness 
class. More precisely, for a fixed tetrahedral partition � of the underlying domain �, our spline space of interest is defined 
as

Sr
d(�) = {s ∈ Cr(�) : s|T ∈ Pd for each tetrahedron T ∈ �}. (1)

Finding the exact dimensions of spaces Sr
d(�) of trivariate splines remains an open problem. While the dimension of any 

particular spline can be computed using software such as Macaulay2, or the java applet (Alfeld), general formulae are still 
unknown. This problem is inherited from bivariate splines, where the dimension remains unknown for d ≤ 3r + 1. As it is 
shown in section 17.8 in Lai and Schumaker (2007), there is a tight connection between trivariate and bivariate cases, and 
there is no hope to resolve the trivariate case before the dimension of bivariate splines is known for all values of d and r. 
We note that despite this difficulty, the dimensions of trivariate splines are known for few very special partitions, including 
the so-called macro-element or finite-element spaces. For example, trivariate splines on the Alfeld, the Clough–Tocher and 
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Fig. 1. Orange in R
3.

Worsey–Piper splits, see Lai and Schumaker (2007) and references therein. Other examples do not qualify as finite-element 
spaces, but are built on very special grids, see Schumaker and Sorokina (2004) for an example. The first and only formula 
for a dimension of a trivariate spline space on a tetrahedral partition of a somewhat general nature is for the so-called 
oranges, see Theorem 17.30 in Lai and Schumaker (2007). An orange, see Fig. 1, is a union of tetrahedra all sharing the same 
edge, [u, v] in Fig. 1, and pairwise sharing common triangular faces. The goal of this paper is to provide a second example 
of such a general formula for a partition that we call a bipyramid cell, see Fig. 2. A bipyramid cell is a special case of the 
so-called interior cell. An interior cell is a collection of tetrahedra all sharing an interior vertex (cf. Section 17.8.1 in Lai and 
Schumaker, 2007). Note that a bipyramid cell is very different from an orange. An orange is not an interior cell, and all 
smoothness conditions associated with it are essentially bivariate. The smoothness conditions associated with the bipyramid 
cell include purely trivariate ones. Because of this difficulty, we have been able to analyze the case for r = 1 in (1) only.

A large part of research in the area of trivariate splines has focused on obtaining upper and lower bounds on the 
dimension of trivariate spline spaces. Several results have been obtained for bounding the dimension of general splines 
either below or above, see Mourrain and Villamizar (2014), Lau (2005), Alfeld and Schumaker (2008), Alfeld (1996), and 
Shan (2014). None of the bounds cited above are tight enough to obtain exact dimensions. In this paper, we prove new 
upper bounds for the bipyramid cells that allow us to obtain exact dimensions in three out of four subcases; in the last 
subcase our new upper bound is very close to the known lower bound, and we conjecture that the dimension is equal to 
the upper bound.

Finally, we prove that the lower bound in Shan (2014) has a typo; fixing this leads to an improved lower bound. We com-
pare the improved lower bound to our new upper bound. The lower bound is obtained using homological techniques, while 
the upper bound is proved using Bernstein–Bézier analysis.

The paper is organized as follows. In Section 2 we introduce bipyramid cells, and study their geometry. In Section 3 we fix 
the bound in Shan (2014), and derive the lower bound for the dimension of S1

d(�) on bipyramid cells. In Section 4 we prove 
a result on supersmoothness needed to obtain our new upper bound. Section 5 contains several results on the dimension 
of bivariate splines that are also needed to derive the new upper bound. The main results of this paper concerning the 
new upper bound and the exact dimension of S1

d(�) on bipyramid cells are in Section 6. We conclude with remarks and 
conjectures in Section 7.

2. Preliminaries

To begin, we define a class of partitions in R3 called bipyramid cells, see e.g. Fig. 2.

Definition 2.1. A bipyramid cell is a tetrahedral partition � such that:

• there is exactly one interior vertex v0;
• n boundary vertices v1 through vn are coplanar along with v0, and form a polygon surrounding v0 in the base plane

B := [v1, . . . , vn];
• each vertex vi , i = 1, . . . , n, is connected to v0 by the interior edges [v0, vi];
• two boundary vertices vn+1 and vn+2 lie outside the base plane B , are on opposite sides of B , and are connected to v0

by the interior edges [v0, vn+1] and [v0, vn+2]; and
• vertices vn+1 and vn+2 connect to the boundary vertices vi , i = 1, . . . , n.

It is easy to check that these conditions force � to be shellable with no holes or cavities, see Lai and Schumaker (2007)
for a discussion of the importance of these facts. For simplicity, and without loss of generality, we can assume that the 
interior vertex v0 is located at the origin, and the n coplanar boundary vertices lie in the base xy-plane. For the remainder 
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