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Building on a result of U. Reif on removable singularities, we construct C1 bi-3 splines 
that may include irregular points where less or more than four tensor-product patches 
meet. The resulting space complements PHT splines, is refinable and the refined spaces are 
nested, preserving for example surfaces constructed from the splines. As in the regular 
case, each quadrilateral has four degrees of freedom, each associated with one spline 
and the splines are linearly independent. Examples of use for surface construction and 
isogeometric analysis are provided.

Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction

Geometrically continuous Gk spline complexes and generalized subdivision surfaces are the two most popular fami-
lies of constructions for filling multi-sided holes in a regular tensor-product spline lattice. Although many properties of 
subdivision surfaces can be computed by spectral analysis, their representation as an infinite sequence of ever smaller 
smoothly-connected surface rings complicates their inclusion into the existing industrial design infrastructure and their 
analysis computing integrals. By contrast, the finitely many patches of a Gk spline complex are typically more convenient 
and fit well into the CAD pipeline. However, refining a Gk spline complex requires careful book keeping. For, what used to 
be an edge where patches join with Gk continuity is now split into two. To represent the same spline complex, the pieces 
further away from the multi-sided hole have to remember to join using Gk rules rather than the regular Ck rules that the 
immediate regular neighborhood seems to prescribe. If we ignore the book keeping, we can refine Gk spline complexes, but 
the resulting spaces are not nested. That is, an initial surface or function will typically not have an exact representation in 
refined form. By contrast, subdivision functions yield nested spaces by construction.

Can we combine, at multi-sided configurations, a finite representation with simple nested refinability? After developing 
a solution, we realized that our solution was rather similar to work already published in U. Reif’s Ph.D. thesis (1993, 1997). 
Reif proposed to project bi-cubic C1 splines into a subspace that, despite being singular at the central point of the n-sided 
cap, guarantees tangent continuity at the central, irregular point and C1 continuity everywhere else. However, there were 
two shortcomings: poor shape and a loss of degrees of freedom near the multi-sided configurations. Inconveniently, the 
projected space has fewer degrees of freedom near the irregularity than in the surrounding regular spline regions; and 
these degrees of freedom cannot be symmetrically distributed as proper control points. Our variant of Reif’s construction 
applies one localized 2 × 2 split (see Fig. 1a) so that the resulting degrees of freedom are uniformly distributed and so that
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Fig. 1. Piecewise bi-cubic refinable C1 basis functions f i j . On quadrilaterals adjacent to irregular points, the basis functions of the spline space consist of 
2 × 2 C1-connected polynomial pieces. Surface and analysis space consist of linear combinations ∑ ci j f i j with control points ci j .

� regardless of the valences of its vertices, each quadrilateral of the input (un-split) quad mesh is associated with four 
degrees of freedom (four basis functions).

In the regular case, where all the vertices of a quad have valence four, these four degrees of freedom are the B-spline control 
points of bicubic splines with double knots. Figs. 1a, b show basis functions near irregular points and the local split of the 
quad mesh that provides the full four degrees of freedom despite the projection. The splines complement and are naturally 
compatible with bi-cubic PHT splines (Deng et al., 2008; Li et al., 2010; Kang et al., 2015) for localized refinement. Fig. 1c 
illustrates a basis function near a PHT-refined n = 5 neighborhood.

1.1. Related literature

In the 1990s, a number of C1 surface constructions were based on singularities at the vertices (Peters, 1991;
Warren, 1992; Pfluger and Neamtu, 1993; Neamtu and Pfluger, 1994; Reif, 1995a, 1997) including constructions of cur-
vature continuous surfaces (Bohl and Reif, 1997; Reif, 1995b). A major contribution of Reif’s singular construction (Reif, 
1997) was a proof showing that the corner singularity is removable by a local change of variables; and that the result-
ing surface is tangent continuous at and near the central irregular point where more of fewer than four tensor-product 
patches come together. More recently, in the context of iso-geometry, Takacs and Jüttler (2012) analyzed singular spline 
constructions, but did not realize the connection to the earlier surface constructions. They observed that specific linear 
combinations of singular splines can be sufficiently regular for iso-geometric analysis and closed with the prediction that 
“main targets for further analysis are approximation properties on singular domains”. The monograph (Peters and Reif, 
2008) characterizes subdivision surfaces as smooth spline surfaces with singularities at the irregular points and establishes 
the differential-geometric properties of subdivision surfaces at the singularities. Subdivision functions have repeatedly been 
used as finite elements (Cirak et al., 2000, 2002; Barendrecht, 2013; Nguyen et al., 2014). The linear independence of Loop 
and Catmull–Clark subdivision splines, except for the cube mesh, was proven in Peters and Wu (2006).

Reif’s construction is based on bicubic splines with double knots. These functions have been generalized for local re-
finement using T-corners where coarse and fine splines meet. The local refinability of these PHT splines (Deng et al., 2008;
Li et al., 2010; Kang et al., 2015) nicely complements the ability we focus on: to create multi-sided blends.

Overview. Section 2 collects the notation and setup for constructing the splines near irregularities. Section 3 derives the 
splines. Section 4 discusses their properties: C1 smoothness, refinability and linear independence of the functions associated 
with the four degrees of freedom of each quadrilateral. Section 5 discusses two uses of the splines.

2. Definitions and setup

We consider a network of quadrilateral facets or quads. The nodes where four quads meet are called regular, else irregular 
nodes. An irregular node must not be a direct neighbor of an irregular node, but may be a diagonal neighbor within the 
same quad. If the assumption fails, one Catmull–Clark-refinement step can enforce the requirement.

Except where the construction switches to the PHT construction to accommodate local refinement, every quad � is 
associated with four basis functions, hence four degrees of freedom, c�

i j ∈ R
d, i, j ∈ {1, 2}. Surface and analysis space will 

consist of linear combinations 
∑

ci j f i j with control points ci j . We obtain basis functions f k
i j , for example, by setting c�

i j = 1
and all other coefficients to zero and then applying the Algorithm of Section 3. It is convenient to define the basis function 
f k

i j piecewise by tensor-product polynomials b of bi-degree 3 in Bernstein–Bézier (BB) form
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