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This paper proposes a geometric algorithm for computation of geodesic on surfaces. The 
geodesics on surfaces are traced in a simple way which is independent of the complex 
description of the geodesic equations. Through derivation process, the calculation error of 
this algorithm is obtained. A step size adjustment strategy which enables the step size 
adapt to the geometry of surface is introduced. The proposed method is also compared 
to some other well-known methods in this study. Many geodesics computed using these 
approaches on various B-spline surfaces or their equivalent tessellated surfaces have been 
presented. Experiments demonstrate that the proposed algorithm is efficient. Meanwhile, 
the results show that the step size adjustment strategy works well for most of the cases.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Geodesic on a surface is an intrinsic geometric feature that plays an important role in a diversity of applications. The 
importance of geodesic is well known in the computer simulation of design and manufacturing process of composite com-
ponents. For tape laying process, geodesic allows minimizing the steering of the tape (Debout et al., 2011). For filament 
winding process, it would be impossible to lay a filament in any way other than along a geodesic on a frictionless con-
vex surface. Geodesic also finds its application in surface and shape processing, such as surface flattening (Azariadis and 
Aspragathos, 1997, 2001), segmentation, sampling, meshing and comparison of shapes (Peyré et al., 2010).

A curve on a surface is called a geodesic if and only if the normal vector to the curve is everywhere parallel to the 
normal vector of the surface. A geodesic can also be defined as a curve with zero geodesic curvature.

Available approaches for the computation of geodesic on surfaces can be classified broadly as analytical and numerical, 
and the later one is more widely used than the former one recently. The analytical approaches presented by Do Carmo
(1976) are quite complex and closed form solutions cannot be found for geodesic on general surfaces. As for the numerical 
approaches, Beck et al. (1986) computed geodesic paths on a bicubic spline surface by using the fourth order Runge–Kutta 
method. Patrikalakis and Badris (1989) examined geodesic curves on parametric surfaces when they constructed offset 
curves on Rational B-spline surfaces. Sneyd and Peskin (1990) investigated the computation of geodesic paths on a gener-
alized cylinder using a second order Runge–Kutta method. Hotz and Hagen (2000) presented a geometric method for the 
construction of geodesics on arbitrary surface. Their method is based on the fundamental property that geodesics are a 
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generalization of straight lines on planes. The superiority of this method is that it makes us independent of the complex 
description of the surface. Ying and Candes proposed an approach for rapidly computing a very large number of geodesics 
on a smooth surface. Their approach is built upon the phase flow method and is especially well suited for the problem of 
computing creeping rays (Maekawa, 1996).

Finding the shortest path between two points on surface is a classical problem and it has many important applications. 
Maekawa introduced an approach for finding the shortest path between two points on a free-form parametric surface based 
on a relaxation method relying on finite difference discretization (Ying and Candes, 2006). Kasap et al. (2005) presented 
a numerical method for the computation of geodesic between two points on surface. They solve the nonlinear differential 
equations of geodesic via the finite-difference method and the iterative method. Chen (2010) proposed a geodesic-like curve 
that approaches to the geodesic on surface when the order of the curve reaches to infinity. Chen’s geodesic-like curve has 
been proved to be accurate.

Many accurate discrete methods approach geodesics or the shortest paths on tessellated surfaces (Tucker, 1997;
Ravi Kumar et al., 2003), polygonal surfaces (Polthier and Schmies, 1998; Kanai and Suzuki, 2001) and triangular meshes 
(Martinez et al., 2005; Surazhsky et al., 2005). Bose et al. (2011) did a survey which gave an overview of theoretically and 
practically relevant algorithms to compute geodesic paths and distances on three-dimensional surfaces. The algorithms are 
differentiated based on theoretical time complexity and approximation ratio.

In general, conventional approaches for computation of geodesic can be classified broadly into three types. First, solve the 
nonlinear differential equations of geodesic by using a numerical integration method such as Runge–Kutta method. Second, 
compute discrete geodesics on discrete surfaces by following some rules. Last, construct geodesics on smooth surfaces by 
using geometric methods. The first type is elegant and accurate, but the differential equations of geodesic are very com-
plicated and generally not easy to solve. Discrete geodesics have been gaining attention as computer becomes increasingly 
more powerful and discretized models become more prevalent in geometric modeling. However, the discrete geodesics can-
not be computed directly on the original smooth surface. There is little work on constructing geodesics directly on smooth 
surfaces by using geometric methods. The geometric method presented by Hotz and Hagen is complicated as it needs to 
compute projection of point of tangent plane in each step. Ravi Kumar’s method can be extended to estimate geodesics on 
regular surfaces (Chen, 2010). However, this method does not perform on regular surfaces directly. The discrete geodesic 
is computed at first and then projected to the regular surface. In this work, we present a compact geometric method for 
constructing geodesics directly on smooth surfaces. Firstly, principle of the method is described in detail. Then, calculation 
error of the method is provided through derivation process. Finally, the method is tested on a group of different surfaces. 
See Table 1 for used notations.

2. Principle of the algorithm

This work describes an efficient method which aims to trace geodesic on parametric surfaces. The presented approach is 
independent of the complex description of the geodesic equations and is summarized as follows:

We look at a surface S which is given by a parameterization r(u, v) = [x(u, v), y(u, v), z(u, v)], where x, y and z are 
differentiable functions of the parameters u and v . As this work focus on providing a computational method for the geodesic, 
we assume that S is regular.

A curve C lying entirely on the surface S can be expressed in parametric form by:

u = u(s), v = v(s), (1)

where s is the arc length.
Let Q 0 = r(u0, v0) denote a starting point on curve C in three-dimensional space, and T 0 the unit tangent vector of 

curve C at Q 0.
Then the three-dimensional directional vector T 0 is pulled back to the parametric domain adopting a simple procedure 

(Piegl and Tiller, 1997), and we get the direction of C ′ at q0 = (u0, v0) which can be represented as L0 = (u′(q0), v ′(q0)). 
Here C ′ and q0 are the preimage of curve C and point Q 0 in the parametric domain, respectively.

Assume that q1 = (u1, v1) is the point lying in the neighborhood of q0 on C ′ , and it can be approximated as:

(u1, v1) = (
u0 + u′(q0)�s, v0 + v ′(q0)�s

)
, (2)

where �s is arch length increment.
Let Q 1 = r(u1, v1) denote the three-dimensional image point of q1 on S . According to the Frenet–Serret formulas, the 

unit tangent vector of curve C at Q 1 can be approximated as:

T 1 = T 0 + k0βββ0�s, (3)

where T 1 is the unit tangent vector of curve C at Q 1, k0 is the curvature of curve C at Q 0 and βββ0 is the principal normal 
vector of curve C at Q 0.

Suppose curve C is geodesic on surface S , and then Eq. (3) can be rewritten as:

T 1 = T 0 ± k0n0�s, (4)
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