
Technical Section

Booleans of triangulated solids by a boundary conforming tetrahedral
mesh generation approach$

Zhoufang Xiao a,b, Jianjun Chen a,b,n, Yao Zheng a,b, Jianjing Zheng a,b, Desheng Wang c

a Center for Engineering and Scientific Computation, Zhejiang University, Hangzhou 310027, China
b School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
c Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

a r t i c l e i n f o

Article history:
Received 7 December 2015
Received in revised form
23 April 2016
Accepted 26 April 2016
Available online 14 May 2016

Keywords:
Boolean
Mesh generation
Boundary recovery
Delaunay triangulation
Intersection

a b s t r a c t

A new algorithm is proposed to recast Boolean operations of triangulated solids as a boundary con-
forming tetrahedral meshing problem. Different from those existing algorithms that merely maintain a
conforming surface mesh, the new algorithm maintains a boundary conforming volume mesh at the
same time of computing surface intersections. This volume mesh not only provides a background
structure in helping the improvement of the efficiency of intersection computations, but also enables the
development of a set of efficient and reliable flood-filling type procedures to extract the Boolean outputs.
The efficiency and robustness of the proposed algorithm are investigated in further details, and various
techniques are suggested to tackle these two issues accordingly. Finally, the performance of the proposed
algorithm has been evaluated by performing suitable test cases and the results are compared well with
those data obtained by other state-of-the-art codes.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Boolean operations of triangulated solids are fundamental tasks
in computational geometry, computer-aided design, computer
graphics, among many other subjects [1–3]. In general, Boolean
algorithms can be classified into two major types, according to the
approach it adopts for surface repairing, i.e., rediscretizing the
surface [4–10] and repairing intersections in-place [11–25]. The
second type of algorithm is preferred in some applications [1–3],
because it can ensure geometric accuracy of the output surface.
Besides, it can set up the edge-wise and the face-wise mappings
between the input and output surfaces so that information
attached to the input surface can be easily inherited by the output
surface. Those existing Boolean algorithms of repairing intersec-
tions in-place [11–25] are usually based on a bottom-up procedure,
in which it first computes the intersection lines, then imprints
these lines onto the surface and uses the chain of intersections
lines to bound a surface region, and finally, combines surface
regions with similar in/out properties to form the Boolean outputs.
In this study, a Boolean algorithm following a very different
flowchart to those existing methods is presented. Fig. 1 illustrates
the basic flowchart of performing the union operation of three
balls, where three major steps are generally involved as:

(1) Delaunay tetrahedralization of input surface points. This step
starts from a Delaunay tetrahedralization of a box enclosing
input surfaces, and then inserts surface points individually
into the tetrahedralization by an incremental point insertion
scheme [26–29].

(2) Recovery of lost boundary constraints. Lost boundary con-
straints are recovered by inserting Steiner points [30–46] at
intersection positions of lost constraints and the tetrahedrali-
zation. Accordingly, surface and volume elements are subdi-
vided to maintain the mesh conformity. As a result, the
intersections and overlaps of input surfaces are repaired in-
place and a boundary conforming tetrahedral mesh is pro-
duced as output.

(3) Preparation of the Boolean outputs. Firstly, the volume ele-
ments are classified using a flood-filling algorithm. A set of
volume elements that lies inside at least one input surface
exactly fills in the volume domain of the union operation of all
input surfaces. The output of the union operation is composed
of the exterior faces of this volume domain.

The most important step of the proposed algorithm is Step 2,
where intersection lines are computed and imprinted to result in a
boundary conforming tetrahedral mesh. Unlike existing approa-
ches that create additional spatial decomposition structures to
speed up the intersection computations [11], the proposed algo-
rithm utilizes this tetrahedral mesh, as a background structure, to
compute the intersections very efficiently. Besides, the existence of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

http://dx.doi.org/10.1016/j.cag.2016.04.004
0097-8493/& 2016 Elsevier Ltd. All rights reserved.

☆This article was recommended for publication by Kai Hormann.
n Corresponding author. Tel.: þ86 571 87951883; fax: þ86 571 87953167.
E-mail address: chenjj@zju.edu.cn (J. Chen).

Computers & Graphics 59 (2016) 13–27

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2016.04.004
http://dx.doi.org/10.1016/j.cag.2016.04.004
http://dx.doi.org/10.1016/j.cag.2016.04.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.04.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.04.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.04.004&domain=pdf
mailto:chenjj@zju.edu.cn
http://dx.doi.org/10.1016/j.cag.2016.04.004


a boundary conforming tetrahedral mesh enables a top-down
procedure of preparing the Boolean outputs (i.e., Step 3). It first
classifies volume elements into different regions, and then extracts
common surface regions and chains of intersection lines that
bound these surface regions. As the above procedures access mesh
topology only, they are more reliable and efficient than their
counterparts that often rely on some kinds of geometrical com-
putations [11–25].

Note that most Boolean algorithms only consider the case of
two input components. When more than two components are
involved, the Boolean procedure need be called recursively. Taking
the input shown in Fig. 1a as an example, such a Boolean proce-
dure needs to first compute the union of two balls, and then add
the third ball into the Boolean computation. In each Boolean
calling, some computations may be unnecessarily repeated. In
contrary, the proposed algorithm treats the input as a whole (Step
2), and its computing efficiency remains stable no matter how
many components the same input is separated to. Clearly, when
the input geometry contains a large number of components, the
proposed algorithm can achieve a higher computing efficiency
than those based on recursive procedures.

Nevertheless, because existing boundary recovery algorithms
only consider surface inputs containing no intersections and
overlaps, more intersection scenarios need be identified and dealt
with accordingly when applied these algorithms in Boolean
operations. Meanwhile, the efficiency and robustness issues need
be investigated carefully.

With respect to the efficiency issue, a key step is to localize the
intersection computations [11]. In this study, a set of memory-
saving data structures will be introduced to represent the surface
and volume meshes, and based on which, the intersection com-
putations are limited in the local parts of the surface and volume
meshes where intersections really happen. These efforts enable
the developed Boolean algorithm to manage a large mesh input at
a comparable speed with those obtained by the fastest Boolean
algorithms [25].

With respect to the robustness issue, although recovering
prescribed boundary constraints from a tetrahedral mesh is always
possible in theory by inserting Steiner points, inconsistent geo-
metric computations may collapse the boundary recovery

algorithm in practice. Exact predicates can be introduced to
improve the robustness remarkably [47,48]. Nevertheless, because
the positions of Steiner points are represented by fix-precision
floating-point numbers, exact predicates with these positions as
inputs may return an undesirable value and still collapse the
algorithm. A solution to this issue is the use of exact arithmetic
[16–18]. However, this may complicate the algorithm and slow-
down its timing performance considerably. Therefore, we leave
this solution for the future work, but introduce two other reme-
dies instead. The first remedy is a mesh topology improvement
scheme, which is used to transform a mesh that intersects pre-
defined constraints intensively to another one with much fewer
intersections, thus remarkably reducing the number of Steiner
point insertion (Step 2). The second remedy is to record a mapping
between a Steiner point and the intersecting entities from which
the Steiner point is generated and a mapping between the original
edges and faces and their subdivision results. These auxiliary data
structures can help to replace some error-prone geometrical
computations by more reliable topological computations.

The remaining sections of the paper are organized as follows. In
Section 2, previous studies on boundary recovery algorithms and
Boolean algorithms are reviewed, followed by a brief summary of
our contributions. Next, the boundary conforming meshing pro-
cedure and the top-down flowchart that prepares the Boolean
outputs are detailed in Sections 3 and 4, respectively. Various
examples and their statistics are presented in Section 5. Finally,
concluding remarks are given in Section 6.

2. Literature review

2.1. Boundary recovery algorithms

The Delaunay criterion provides a reasonable algorithm to tri-
angulate a given point set. However, boundary constraints could
be lost in the resulting mesh, and therefore either conforming or
constrained method is required to recover the lost constraints. For
the conforming method, Steiner points are inserted onto the
constraints and will not be removed from the resulting mesh;
thus, some of the lost constraints can be recovered as concatena-
tions of sub-constraints. For the constrained method, the recov-
ered constraints are the same as the prescribed ones, and no
Steiner points are allowed to remain on the constraints.

There is no guarantee to recover an edge or a face from a tet-
rahedral mesh without adding Steiner points [32]. The typical
failing examples are Schönhardt polyhedron [33] and Chazelle
polyhedron [34]. Therefore, a robust 3D boundary recovery algo-
rithm must consider how to insert Steiner points [30,31,35–46]. If
Steiner points are allowed, the termination problems of both 3D
conforming and 3D constrained boundary recovery have already
been theoretically resolved [35–37].

Because the existence of Steiner points may have negative
impacts on the robustness and efficiency of the boundary recovery
procedure, two primary issues regarding Steiner points need fur-
ther attention. The first issue is where and how to add Steiner
points. The second issue is how to remove as many Steiner points
as possible.

To resolve the first issue, George et al. [38] proposed an algo-
rithm in the early 1990s that was based on local transformation
operators in conjunction with heuristic rules for inserting Steiner
points; however, this algorithm suffers from some robustness
issues [39]. Weatherill and Hassan [35] first investigated another
algorithm that inserts Steiner points directly at the intersection
positions of lost boundaries and the mesh. This algorithm is pre-
ferred by many researchers [30,31,36,40–42] and also adopted in
this study. Another type of algorithm for Steiner point insertion is

Fig. 1. Illustration for the basic flowchart of the proposed algorithm. (a) The input
surfaces (three balls). (b) The Delaunay tetrahedralization after inserting all input
points. (c) The boundary conforming tetrahedral mesh. (d) The surface output by
the union operation.

Z. Xiao et al. / Computers & Graphics 59 (2016) 13–2714



Download English Version:

https://daneshyari.com/en/article/441767

Download Persian Version:

https://daneshyari.com/article/441767

Daneshyari.com

https://daneshyari.com/en/article/441767
https://daneshyari.com/article/441767
https://daneshyari.com

