Computers & Graphics 59 (2016) 68-78

journal homepage: www.elsevier.com/locate/cag

Contents lists available at ScienceDirect OMPUTER
&GRAPHICS

Computers & Graphics

Technical Section

Hierarchical path-finding for Navigation Meshes (HNA*)™ @Cmsmk

Nuria Pelechano *, Carlos Fuentes

Universitat Politécnica de Catalunya, Spain

ARTICLE INFO

Article history:

Received 27 October 2015
Received in revised form

18 May 2016

Accepted 20 May 2016
Available online 30 May 2016

Keywords:

Path-finding

Hierarchical representations
Navigation meshes

ABSTRACT

Path-finding can become an important bottleneck as both the size of the virtual environments and the
number of agents navigating them increase. It is important to develop techniques that can be efficiently
applied to any environment independently of its abstract representation. In this paper we present a
hierarchical NavMesh representation to speed up path-finding. Hierarchical path-finding (HPA*) has been
successfully applied to regular grids, but there is a need to extend the benefits of this method to poly-
gonal navigation meshes. As opposed to regular grids, navigation meshes offer representations with
higher accuracy regarding the underlying geometry, while containing a smaller number of cells.
Therefore, we present a bottom-up method to create a hierarchical representation based on a multilevel
k-way partitioning algorithm (MLkP), annotated with sub-paths that can be accessed online by our
Hierarchical NavMesh Path-finding algorithm (HNA*). The algorithm benefits from searching in graphs
with a much smaller number of cells, thus performing up to 7.7 times faster than traditional A* over the
initial NavMesh. We present results of HNA* over a variety of scenarios and discuss the benefits of the

algorithm together with areas for improvement.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Most video games are required to simulate thousands or mil-
lions of agents who interact and navigate in a 3D world and show
capabilities such as chasing, seeking or intercepting other agents.
Path-finding provides characters with the ability to navigate
autonomously in a virtual environment. The most well known
path-finding algorithm is A* which explores the nodes of a graph
while balancing the accumulated cost with a heuristic to find an
optimal path quickly. Throughout the years many algorithms have
been proposed to further speed up the basic A* algorithm, but the
cost of these algorithms is still strongly dependent on the size of
the graph. Hierarchical path-finding aims to reduce the number of
nodes that need to be explored when computing paths in large
terrains. The reduction in the number of nodes for higher levels of
the hierarchy significantly decreases the execution time and
memory footprint when calculating paths.

Current hierarchical techniques may result in unbalanced
abstractions. For example, top-down hierarchies are created by
splitting the environment into large square clusters, where all the
clusters contain the exact same number of lower level grid cells.
The main disadvantages of such constructions are that the

“This article was recommended for publication by R. Boulic.
* Corresponding author.
E-mail address: npelechano@cs.upc.edu (N. Pelechano).

http://dx.doi.org/10.1016/j.cag.2016.05.023
0097-8493/© 2016 Elsevier Ltd. All rights reserved.

resulting higher level of the hierarchy may have an uneven
number of edges between nodes and also an uneven number of
walkable cells (since there may be some clusters with a large
percentage of the grid cells being occupied by obstacles).

Navigation meshes represented by polygons provide closer
representation of the geometry with a lower number of cells than
regular grids. Since having a smaller number of cells can greatly
accelerate path-finding, it is therefore necessary to extend the
concept of hierarchical path-finding to a more general repre-
sentation of navigation meshes with polygon based cells. More-
over it would also be beneficial to have a hierarchical repre-
sentation with a balanced number of polygons per node and
portals between nodes.

In this paper we present a new hierarchical path-finding
solution for large 3D environments represented with polygonal
navigation meshes. The presented solution works with navigation
meshes where cells are convex polygons, and thus it also includes
triangular representations. Our hierarchical graph representation
is based on a multilevel k-way partitioning algorithm annotated
with sub-path information. Our method presents a flexible
approach in terms of both the number of levels used in the hier-
archy and the number of polygons to merge between levels of the
hierarchy. We evaluate the gains in performance when using our
hierarchical path-finding, and discuss the trade-offs between the
number of merged polygons and the number of levels employed
for the search. We present a number of benchmarks that can help


www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2016.05.023
http://dx.doi.org/10.1016/j.cag.2016.05.023
http://dx.doi.org/10.1016/j.cag.2016.05.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.05.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.05.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.05.023&domain=pdf
mailto:npelechano@cs.upc.edu
http://dx.doi.org/10.1016/j.cag.2016.05.023

N. Pelechano, C. Fuentes / Computers & Graphics 59 (2016) 68-78 69

during the parameter fitting process to achieve the best speedups,
as well as a quantitative analysis of the bounds on sub-optimality
of the paths found with HNA*. We also present an evaluation of the
bottleneck that appears for certain configurations when inserting
the start and goal positions in the hierarchical representation.

2. Related work

A large amount of work to speed up path-finding focuses on
enhancing the A* algorithm to reduce the computational time
needed to calculate a path. This comes at the cost of finding sub-
optimal paths or allowing a certain degree of error when searching
for the optimal path and then allows the algorithm to repair those
errors in future searches that are interleaved with the execution.

The well known A* algorithm [1] is a robust and simple to
implement method with strict guarantees on optimality and
completeness of solution. The A* algorithm uses a heuristic to
restrict the number of states that must be evaluated before finding
the true optimal path and it guarantees to expand an equal
number or fewer states than any other algorithm using the same
heuristic. However A* can be very time consuming for large sce-
narios. Anytime Planning algorithms find the best suboptimal plan
and iteratively improve this plan while reusing previous plan
efforts. One of the most popular A* is called Anytime Repairing A*
(ARA*) [2]. It performs a series of repeated weighted A* searches
while iteratively decreasing a loose bound (€). It iteratively
improves the solution by reducing ¢ and reusing previous plan
efforts to accelerate subsequent searches. However ARA* solutions
are no longer guaranteed to be optimal.

D* Lite [3] performs A* to generate an initial solution and
repairs its previous solution to accommodate world changes by
reusing as much of its previous search efforts as possible. D* can
correct “mistakes” without re-planning from scratch, but requires
more memory. Anytime Dynamic A* (AD*) [4] combines the
properties of D* and ARA* to provide a planning solution that
meets strict time constraints. It efficiently updates its solutions to
accommodate dynamic changes in the environment.

DBA* algorithm [5] combines the memory-efficient sector
abstraction developed for [6] and the path database used by [7] in
order to improve space complexity and optimality. Huang [8]
presented a path planning method for coherent and persistent
groups in arbitrarily complex navigation mesh environments. The
group is modeled as a deformable and splittable area preserving
shape. The efficiency of the group search is determined by three
factors: path length, deformation minimization, and spitting
minimization.

Hierarchical graph representations have also been used for
visualization purposes of large data sets [9,10]. The goal in these
applications is to offer an overview first, and then be able to zoom
and filter to offer details on demand.

Planning via hierarchical representation has been used to
improve performance in problem solving for a long time [11].
Holte et. al. [12] introduced hierachical A* to search in an abstract
space and use the solution to guide search in the original space.
There has also been work on abstraction based on bottom-up
approaches for general graphs [13,14] but without considering
balancing the number of nodes or minimizing the edge-cut. Stur-
tevant and Jansen [15] extended the theoretical work slightly and
provided examples of a number of different abstraction types over
graphs. In this work graphs are created from 2D grid-like struc-
tures by setting a node for each walkable cell. Bulitko et al. [16]
showed that the quality of paths can decrease exponentially with
each level of abstraction. Sturtevant and Geisberger [17] studied
the combination of abstraction and contraction hierarchies to
speed up path-finding. Abstraction uses a top-down approach

creating a 16 x 16 overlay across the lower level regular grid.
Contraction builds a higher level graph using the concept of
importance of nodes, which requires priorities for the nodes to be
set correctly as they will affect the contraction algorithm.

Hierarchical representations have been used over 2D grid
representations [18]. In [19] an adaptive subdivision of the envir-
onment is proposed with efficient indexing, updating, and
neighbor-finding operations on the GPU which reduces the
memory requirements. Another similar method based on HPA*,
but taking into account the size of the agents and terrain traversal
capabilities, is Hierarchical Annotated A* (HAA*) [20]. It presents
an extension of HPA* which allow multi-size agents to efficiently
plan high quality paths in heterogeneous-terrain environments.
Another interesting implementation is DT-HPA* [21] which uses a
decision tree to create a hierarchical subdivision.

Jorgensen presented an automatic structuring method based on
a hierarchy that separated buildings into floors linked by stairs and
represents floors as rooms linked by doorsteps [22]. This method
has a strict hierarchy and does not scale to large outdoors envir-
onments such as the ones often presented in video games. Zlata-
nova [23] presented a framework of space subdivision exclusively
for indoor navigation, by identifying rooms and corridors and
including semantical information.

There are other approaches that focus on allowing agents to be
more environment-aware [24]. In this work planning is based on
an Anytime Dynamic A* and it is carried out satisfying multiple
special constraints imposed on the path, such as: stay behind a
building, walk along walls or avoid the line of sight of other agents.
In [25] a multi-domain anytime dynamic planning framework is
presented which can efficiently work across multiple domains by
using plans in one domain to accelerate and focus searches in
more complex domains. It explores different domain relationships
including the use of way-points and tunnels. The different
domains use only two representations in terms of spacial sub-
division, a 2D grid, and a triangular mesh.

Hierarchical representations have been used to calculate agents
moving between two points at different levels of complexity
[26,27]; from finding a route to animating 3D characters. They
have also been used to combine high level path-finding with low
level local motion [28]. When using triangular representations, it
is possible to optimize the data structures and built in features
such as clearance that can greatly improve performance during
path-finding [29,30]. But it is not straight forward to extend this
implementation to polygonal meshes (i.e. it would not be enough
with a simple triangulation of the polygons). There has been a
recent technical report extending HPA* to triangular representa-
tions [31].

As most of the abstract representations for large 3D complex
environments employ polygon based representations (e.g: NEO-
GEN [32], Recast [33], or navmeshes built from the medial axis
[34]), it is thus necessary to extend the concept of hierarchical
path-finding for general representations of navigation meshes.
Polygonal meshes have certain features and characteristics that
must be taken into account when evaluating the most suitable
hierarchical abstraction to be used.

3. Framework

Our framework consists of a pre-processing phase where the
hierarchy is created, and an adapted version of the basic A* algo-
rithm to perform searches online in this hierarchical
representation.

The pre-process phase starts with a polygonal navigation mesh
that represents an abstract partition of the 3D world. This first
navigation mesh is considered to be the lowest level in a



Download English Version:

https://daneshyari.com/en/article/441771

Download Persian Version:

https://daneshyari.com/article/441771

Daneshyari.com


https://daneshyari.com/en/article/441771
https://daneshyari.com/article/441771
https://daneshyari.com

