
Graphical Models 84 (2016) 28–37

Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

Fast exact shortest distance queries for massive point clouds

David Eriksson

a , 1 , ∗, Evan Shellshear b

a Center for Applied Mathematics, Cornell University, Ithaca, New York, USA
b Fraunhofer-Chalmers Centre, Gothenburg, Sweden

a r t i c l e i n f o

Article history:

Received 2 September 2015

Revised 24 February 2016

Accepted 26 February 2016

Available online 19 March 2016

Keywords:

Massive point cloud

Shortest distance computation

Out-of-core

Path-planning

a b s t r a c t

This paper describes a new efficient algorithm for the rapid computation of exact shortest distances

between a point cloud and another object (e.g. triangulated, point-based, etc.) in three dimensions. It

extends the work presented in Eriksson and Shellshear (2014) where only approximate distances were

computed on a simplification of a massive point cloud. Here, the fast computation of the exact shortest

distance is achieved by pruning large subsets of the point cloud known not to be closest to the other

object. The approach works for massive point clouds even with a small amount of RAM and is able to

provide real time performance. Given a standard PC with only 8GB of RAM, this resulted in real-time

shortest distance computations of 15 frames per second for a point cloud having 1 billion points in three

dimensions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

High-resolution point clouds have become very important in

the last decades as researchers have started to exploit their ad-

vantages over triangle-based models in computer graphics appli-

cations [19,21] . Improvements and significant price decreases in

laser scanning technologies have made it possible to easily and

cheaply scan very large objects, thereby creating massive quanti-

ties of point cloud data. At the same time, point clouds now offer

significant advantages over traditional CAD geometries for real life

applications and simulations, Eriksson and Shellshear [6] . In partic-

ular, one area which has received more attention is path planning

in large point clouds and the ability to quickly compute proximity

queries (collision, distance, etc.).

Path-planning through environments consisting of triangle

meshes has been studied intensively and there exists a significant

amount research on the subject [3,7,9,10,16,17] . Although the area

of path-planning with point clouds is newer, there are methods de-

signed specifically for it, such as [11] .

Our focus in this paper is on the distance computation aspects

of path planning. In this area, there are no known papers to the

authors for computing the distances between dynamic massive tri-

angle meshes and point clouds which do not fit in main memory.

The Octomap data structures were used in [15] to compute dis-

tances between point clouds, but their focus was not on massive

∗ Corresponding author.

E-mail address: dme65@cornell.edu (D. Eriksson).
1 This research was carried out while at Fraunhofer Chalmers Centre, Sweden.

data sets so the methods used there were not directly applicable

here. Distance computations between massive static point clouds

and other objects can be carried out with out-of-core exact nearest

neighbor queries, [2] . For a more thorough review of the literature

we refer to [6] .

In this paper we extend the important work begun in [6] where

preprocessing algorithms were developed to divide a point cloud

into smaller subclouds and also simplify the point cloud to allow

approximate shortest distance computations to be carried out in

main memory. These methods demonstrated how fast and approx-

imate closest distance computations could be carried out for mas-

sive point clouds which do not fit into main memory.

However, a drawback of the work presented in [6] is the trade-

off between the size of the point cloud and the level of simplifi-

cation necessary. Already on a point cloud with one billion points

it was shown to be necessary to accept an error of up to 2 cm to

fit the point cloud and other necessary data structures into main

memory. As the point clouds become larger, this error only in-

creases. Here, we show a better way to compute distances between

massive point clouds and other objects (point clouds, CAD geome-

tries, etc.), which is scalable to point clouds of any size and also

has no error in the distance computation, i.e., all distance compu-

tations are exact.

This article demonstrates how it is possible to perform fast,

exact distance queries for path-planning applications in massive

point clouds independent of the amount of RAM available. Because

our final usage is in real-time applications, like in [6] , our goal

is to achieve shortest distance computations with a frame rate of

around 15 fps.

http://dx.doi.org/10.1016/j.gmod.2016.02.002

1524-0703/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.gmod.2016.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/gmod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2016.02.002&domain=pdf
mailto:dme65@cornell.edu
http://dx.doi.org/10.1016/j.gmod.2016.02.002

D. Eriksson, E. Shellshear / Graphical Models 84 (2016) 28–37 29

In order to do this we start by dividing the point cloud into

disjoint subsets using the methods presented in [6] . Given these

subsets, we construct the convex hull of each subset and build two

Proximity Query Package (PQP) models [12] for each subset, where

one contains the extreme points and the other the non-extreme

points. We then introduce Theorems 2 and 4 in order to decide

which subsets can contain the point closest to the object and only

these PQP models will have to reside in RAM. Our focus here is

on three dimensions but, in theory, we expect the results to be

applicable also in higher dimensions. In practice the generalization

to higher dimensions will be challenging due to the computational

and geometric complexity of the convex hull in higher dimensions.

Our proposed strategy is shown to achieve our goal of a fast frame

rate with massive point clouds. One limitation of the algorithm is

that it does not allow the object moving through the point cloud

to be initially contained in the convex hull of one of the subsets.

Section 2 describes how to pre-process a point cloud for fast

exact distance queries. Section 3 introduces a simple way of us-

ing information from the previous distance computation to exclude

subsets that cannot contain the point closest to the object. The

main algorithms are presented in Section 4 and in Section 5 we

test the theoretical results from the first two sections on a real-life

scenario.

2. Pre-processing of the point cloud for fast distance queries

This section will describe how the convex hull of a subset of

points can be used to derive a lower bound on how close any

points contained in the convex hull can be to the object. If we

know that there is a point that is closer to the object than a given

lower bound for the distance to a given convex hull, then this sub-

set of points can be excluded and therefore computing the shortest

distance from this subset to the object can be avoided. This lower

bound is based on the extreme points of the convex hulls and al-

lows for a fast way to approximate the distance to the object from

a set of points.

2.1. Fast distance approximation

Let Q be a finite point cloud, i.e., Q = { q 1 , . . . , q m | q i ∈ R

n , i =

1 , . . . , m } and recall the definition of the convex hull containing the

interior:

Definition 1. The convex hull of a set of points Q is the set

CH(Q) =

{ | Q| ∑

i =1

λi q
i | λi ≥ 0 ,

| Q| ∑

i =1

λi = 1

}

. (1)

We denote the boundary of CH(Q) by ∂CH(Q) and as-

sume throughout the article that CH(Q) is full-dimensional,

i.e., dim (CH(Q)) = dim (Q) = n, although the arguments presented

here can be adapted to the case that CH(Q) is not full-

dimensional. Denote by S ⊂ R

n the object which is moved through

the point cloud and assume that this object is a compact set (e.g.

it could be a polygon mesh or a point cloud). Other than this, we

assume nothing else of the set S . We now introduce the following

convenient notation for the distance between two points, from a

point to a set, and from a set to a set:

Definition 2. Let Q, R ⊂ R

n and q, r ∈ R

n . Define:

d(q, r) = ‖ q − r‖ 2

d(q, R) = inf
r∈ R

d(q, r) (2)

d(Q, R) = inf
q ∈ Q
r∈ R

d(q, r) .

It is worth mentioning that the triangle inequality does not

hold for general Q and R , e.g. when both are arbitrary sets, but

it remains valid here as long as points are introduced as interme-

diates. As a preparation for the main results, an intuitively obvious

theorem stating that the point belonging to CH(Q) that is clos-

est to S must lie in ∂CH(Q) is proved next. Although this result

seems to be a consequence of other well-known results we present

a proof here for completeness.

Theorem 1. Let Q be a finite point cloud and S ⊂ R

n be closed and

bounded and assume that CH(Q) is full-dimensional. If CH(Q) ∩ S =

∅ , the point in CH(Q) closest to S must lie on the boundary.

Proof. Let V = (S , CH(Q)) ⊆ R

n × R

n ∼=

R

2 n and define the func-

tion

f : R

2 n → R

f (x) =

∥∥x S − x CH(Q)

∥∥
2

(3)

where x S ∈ S and x CH(Q) ∈ CH(Q) . From Weierstrass’ theorem, [14] ,

∃ y = (y S , y CH(Q)) ⊆ R

n × R

n ∼=

R

2 n , such that y = arg min

x ∈ V
f (x) .

(4)

since V is closed and bounded. If y CH(Q) lies on the boundary of

CH(Q) , the proof is completed. If y CH(Q) is an interior point of

CH(Q) , construct the line

L =

{
y CH(Q) + (y S − y CH(Q)) t | 0 ≤ t ≤ 1 , t ∈ R

}
⊆ R

n (5)

between the two points. Since y CH(Q) is an interior point of a

closed set, take δ ∈ R > 0 small enough so that ˆ y = y CH(Q) + (y S −
y CH(Q)) δ ∈ CH(Q) . This implies that

f ((y S , ̂ y)) = (1 − δ) f (y) < f (y) . (6)

Note that (y S , ̂ y) ∈ V hence this contradicts the fact that y =

arg min x ∈ V f (x) . Hence the optimal point y CH(Q) must lie on the

boundary of CH(Q) . �

Denote by E (Q) the set of extreme points of CH(Q) , where

E (Q) ⊆Q . A simple inequality (Thereom 2), based only on the ex-

treme points of Q , will now be derived, to quickly determine

whether a point in Q can be the point closest to S . Such a crite-

rion will allow us to neglect subsets Q that are far away from S

without computing the distance from these points to S . In order to

derive a lower bound on how close x ∈ CH(Q) can be to S a few

definitions are necessary. In spite of the following quantities being

dependent on Q and S , where there is no risk of confusion, we sup-

press this in their definitions because Q and S are fixed throughout

the article.

Definition 3. Define u ∈ Q to be the point that is closest to S ,

u = arg min

x ∈ Q
d(x, S) . (7)

Definition 4. Let v ∈ E (Q) be the extreme point closest to S ,

v = arg min

x ∈ E(Q)

d(x, S) . (8)

Definition 5. Let w ∈ E (Q) be the extreme point that is closest to

u in Definition 3 ,

w = arg min

x ∈ E(Q)

d(x, u) . (9)

Note that u � = v can hold since u may not be an extreme point.

It is also possible that u = v = w in which the closest point is an

extreme point. A situation where all points are distinct is illus-

trated to the left in Fig. 1 .

Download English Version:

https://daneshyari.com/en/article/442295

Download Persian Version:

https://daneshyari.com/article/442295

Daneshyari.com

https://daneshyari.com/en/article/442295
https://daneshyari.com/article/442295
https://daneshyari.com

