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a b s t r a c t 

In this paper, we present an approximating multiresolution framework of arbitrary degree for curves on 

the surface of a sphere. Multiresolution by subdivision and reverse subdivision allows one to decrease and 

restore the resolution of a curve, and is typically defined by affine combinations of points in Euclidean 

space. While translating such combinations to spherical space is possible, ensuring perfect reconstruction 

of the curve remains challenging. Hence, current spherical multiresolution schemes tend to be interpolat- 

ing or midpoint-interpolating, as achieving perfect reconstruction in these cases is more straightforward. 

We use a simple geometric construction for a non-interpolating and non-midpoint-interpolating mul- 

tiresolution scheme on the sphere, which is made up of easily generalized components and based on a 

modified Lane–Riesenfeld algorithm. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The question of how to decrease the resolution of a curve and 

restore it to its original state is a well-studied subject in computer 

graphics, and falls under the purview of multiresolution frameworks . 

Applications include level-of-detail control, compression, and mul- 

tiscale editing for curves. Such frameworks can be created using a 

combination of subdivision and reverse subdivision [1] . 

In Euclidean space, subdivision schemes are linear transforma- 

tions that increase the resolution of a curve or surface, while re- 

verse subdivision schemes are linear transformations that decrease 

the resolution. Many subdivision schemes are based on B-Spline 

basis functions, and converge to B-Spline curves or surfaces at the 

limit. Chaikin’s corner-cutting scheme for curves [2] as well as the 

Catmull–Clark [3] scheme for surfaces are some well-known ex- 

amples of B-Spline subdivision schemes for which reverse meth- 

ods have been proposed. Both forward and reverse subdivision are 

often understood and implemented using affine combinations of 

points, specified by simple linear filters. 

When combined into a multiresolution framework, a given vec- 

tor of m fine points f = [ f 0 . . . f m −1 ] 
T can be decomposed to a vec- 

tor of n < m coarse points c = [ c 0 . . . c n −1 ] 
T and associated detail 

vectors (or wavelet coefficients) d = [ d 0 . . . d m −n −1 ] 
T [4,5] , then r e- 

constructed using c and d . A notable property of such a framework 

is that the total number of coarse points and details is equal to the 

original number of points before decomposition. As a result, no ad- 
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ditional information is needed to fully retrieve the high resolution 

data. Furthermore, these operations are both fast and efficient. 

While well understood in 2D or 3D Euclidean space, achiev- 

ing multiresolution via subdivision and reverse subdivision in other 

spaces is a challenging but fascinating topic of study. The sphere, 

for instance, is an elegant and important geometric domain, and of 

particular interest as an approximation of the shape of the Earth 

[6] . However, its surface forms a two-dimensional non-Euclidean 

space in which many traditional geometric intuitions do not apply. 

Curves in spherical space — analogous to curves in Euclidean space 

— are called spherical curves and are formed by an ordered set of 

points f i on the sphere connected by geodesic lines (great circle 

arcs). 

Our work focuses on decreasing and increasing/restoring the 

resolution of spherical curves (i.e. spherical multiresolution) based 

on B-Spline subdivision and reverse subdivision, with an intended 

application in vector data representation on the spherical surface 

of a Digital Earth [7,8] . Geospatial vector data are often very large 

(consisting of thousands of points) and can benefit from multiscale 

representations due to their support for compression, progressive 

transmission over networks, level-of-detail control in visualization, 

and fast estimates for queries. 

In general, the fundamental challenge in spherical multiresolu- 

tion lies in translating affine combinations of points to spherical 

space in a manner that ensures the scheme is loss-less (i.e. perfect 

reconstruction of the original fine data f is achieved). 

A straightforward solution is to project the points of the spher- 

ical curve to a Euclidean domain (e.g. using a spherical projec- 

tion from the field of cartography), apply affine combinations in 

that domain, and project back to the sphere. Potential mappings 
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Fig. 1. A spherical curve defined by three points is shown (on left). After mapping 

the points to latitude/longitude coordinates, drawing Euclidean lines between the 

resulting points, and mapping those lines back to the sphere, significant mapping 

distortions are revealed (on right). 

include latitude/longitude or spherical coordinate conversion, 

which is a standard projection; Snyder projection [9] , which is an 

equal area projection often encountered in Digital Earth frame- 

works; and the exponential map [10] , which maps points to a local 

tangent plane. Unfortunately, as the spherical and Euclidean space 

are not isometric, this approach often introduces distortions into 

the resulting curves (see Fig. 1 ). 

A second approach is to generalize the affine combination p = 

a 0 q 0 + a 1 q 1 + · · · + a n −1 q n −1 ( p, q i ∈ R 

3 , a i ∈ R ) to spherical space 

as the (local) solution to 

min 

p 

∥∥∥∥∥
n −1 ∑ 

i =0 

a i · exp p (q i ) 

∥∥∥∥∥, 

as in [11] , where exp p ( q i ) is the exponential map operator that 

maps q i to a vector in the tangent space of p . However, due to the 

nature of non-Euclidean space, generalizing these combinations in 

this manner does not in general result in a scheme with perfect re- 

construction. Hence, the work of [11] focuses on interpolating and 

midpoint-interpolating multiresolution schemes, for which perfect 

reconstruction can be guaranteed. As a non-interpolating and non- 

midpoint-interpolating (i.e. approximating) scheme, B-Spline mul- 

tiresolution is non-trivial to translate to spherical space. 

A third approach, as seen in [12,13] and the one adopted in this 

paper, is to split the affine combinations into series of two-point 

interpolations. Such two-point interpolations are atomic operations 

in spherical space that are analogous to the simplest atomic oper- 

ations used to create curves in Euclidean space, and can be com- 

puted efficiently using spherical linear interpolation (SLERP), de- 

fined by [14] 

SLERP (p, q, u ) = 

sin [(1 − u ) θ ] 

sin (θ ) 
p + 

sin (uθ ) 

sin (θ ) 
q 

(where θ is the angle between p and q ). Unlike Euclidean space, in 

which any reformulation of an affine combination into two-point 

interpolations will have the same result, in spherical space differ- 

ent reformulations of the affine combination give different results. 

Hence, it is again difficult to ensure perfect reconstruction in this 

case. 

We present in this paper a construction of a loss-less ap- 

proximating multiresolution scheme in spherical space (inspired 

by Euclidean B-Spline multiresolution) made up of sequences of 

two-point interpolations (i.e. SLERP operations). This holds for 

all constituent operations of the multiresolution: subdivision, re- 

verse subdivision, detail computation (i.e. decomposition), and de- 

tail restoration (i.e. reconstruction). The construction is inspired 

by the Lane–Riesenfeld subdivision algorithm for B-Spline subdi- 

vision of arbitrary degree (or smoothness) in Euclidean space [15] , 

which uses two atomic operations: point duplication and midpoint 

finding. Although easily generalized to the sphere, the algorithm 

does not have a corresponding reverse subdivision or multiresolu- 

tion algorithm due to the non-invertibility of the midpoint finding 

operation. 

Our construction, which can reproduce at least some of the B- 

Spline subdivisions returned by the Lane–Riesenfeld algorithm, re- 

places pairs of midpoint-finding operations with discrete smooth- 

ing operators that have local inverses in Euclidean and spher- 

ical space. Detail vectors d i are generalized to detail rotations 

in spherical space, and are easy to compute and restore during 

reconstruction. 

Furthermore, our multiresolution scheme includes reverse sub- 

division, detail computation, and detail restoration constructions 

based on atomic operations; to our knowledge the first of their 

kind. We expect translations of this scheme to more general man- 

ifolds are possible as well, provided an operation analogous to 

SLERP is defined on the manifold. 

The paper is organized as follows. In Section 2 , we describe pre- 

vious works that are related to this problem. A generalization of 

the Lane–Riesenfeld algorithm to spherical space from [13] is de- 

scribed in Section 3 , followed by a generalization to spherical space 

of the modified Lane–Riesenfeld algorithm with invertible averag- 

ing step from [16] in Section 4 . In Sections 5, 6 , and 7 , we present 

our spherical multiresolution scheme, with some comments on 

analysis in Section 8 . Results and comparisons follow in Section 9 . 

2. Related work 

Curves that lie on surfaces (including spheres) have been the 

subject of much research [7,8,17] . Spherical curves are especially 

important, as the sphere is an important shape in Geomatics and 

GIS and serves as an important intermediate shape for applica- 

tions such as parametrization and illumination [18,19] . Spherical 

curves are particularly of interest within the Digital Earth frame- 

work [6,20–22] , which represents the Earth as a curved surface 

rather than as a flattened map. 

Multiresolution for curves and surfaces is also a well-studied 

subject [23–25] . One means of establishing a multiresolution 

framework is to combine subdivision and reverse subdivision, in 

which the former produces a more detailed object while the latter 

reduces the resolution [4,5,26] . The convergence and smoothness 

of the limit curve of a subdivision scheme can be analysed using 

the techniques in [27] for Euclidean space and [12,28] for manifold 

surfaces. In a multiresolution framework based on subdivision and 

reverse subdivision, no details are lost and all information needed 

to reconstruct the curve occupies no more memory than the orig- 

inal model. 

These methods are usually understood and implemented in 

terms of affine combinations/weighted averages. The taking of an 

affine combination in Euclidean space is a fundamental opera- 

tion and very useful for efficient geometric processing. As a result, 

redefining weighted averages within the manifold, spherical, and 

Riemennian spaces have been studied in several previous works 

[29,30] . 

Affine combinations on the sphere have been approached via 

iterative optimization [8] . However, since the exact results of the 

weighted averages in this method are not known a priori (due to 

iterative solving of the optimization), we cannot develop a loss-less 

multiresolution scheme based on this method in the approximat- 

ing case. 

The coefficients of an affine combination may be used as 

barycentric coordinates to describe a point with respect to a set of 

polygon vertices. The spherical barycentric coordinates of a point 

p inside a spherical triangle may be calculated using the method 

described in [17] , or for a point p inside a spherical polygon using 

the work of [31] . In [17] , the resulting barycentric coordinates may 

be used to represent p as a linear combination of the vertices of 
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