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a b s t r a c t

Numerical dissipation acts as artificial viscosity to make smoke viscous. Reducing numer-
ical dissipation is able to recover visual details smeared out by the numerical dissipation.
Great efforts have been devoted to suppress the numerical dissipation in smoke simulation
in the past few years. In this paper we investigate methods of combating the numerical dis-
sipation. We describe visual consequences of the numerical dissipation and explore
sources that introduce the numerical dissipation into course of smoke simulation. Methods
are investigated from various aspects including grid variation, high-order advection, sub-
grid compensation, invariant conservation, and particle-based improvement, followed by
discussion and comparison in terms of visual quality, computational overhead, ease of
implementation, adaptivity, and scalability, which leads to their different applicability to
various application scenarios.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Smoke is desirable in visual effect and video game
industries. It is also one of challenging problems in com-
puter graphics due to its complexity and turbulence. To
obtain realistic smoke and gaseous phenomena, physically
based methods with Navier–Stoke Equations (NSEs) have
been explored to model underlying fluid dynamics.
Although numerically integrating NSEs have been studied
in computational fluid dynamics (CFD), computer graphics
researches focus on simplified discretization and numeri-
cal schemes when visual quality matters most. Simplifica-
tions make physically based methods possible for smoke
simulation but introduce the numerical dissipation. The
numerical dissipation increases fluid viscosity to make it
appear more viscous than intended. It degrades the visual

appearance by smearing out fine details and damping
down the motion quickly. The numerical dissipation has
been recognized to have substantial visual consequences
to the smoke simulation.

Many sources introduce numerical dissipation to the
course of the smoke simulation. Coarse spatiotemporal dis-
cretization produces numerical truncation errors, which is
proven to have a form of viscosity [1]. As fluid quantities
are only defined on discrete locations such as grid points
and particles, interpolation schemes are required to calcu-
late values at undefined positions, which is equivalent to
smoothing operations that produce the numerical dissipa-
tion. The semi-Lagrangian method [2] is widely used for
the smoke simulation attributed to its unconditional sta-
bility and ease of implementation, but it generates a large
amount of the numerical dissipation in backward tracing
and advection subroutines. Many advanced methods are
constructed based on the semi-Lagrangian method to guar-
antee the unconditional stability. However, they also
inherit the disadvantage of massive numerical dissipation.
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Massive effort has been devoted to combat the numer-
ical dissipation from different aspects. Some methods are
developed to eliminate sources of the numerical dissipa-
tion. For instance, it is straightforward to reduce the
numerical dissipation by increasing spatial resolution and
reducing time step. However, both approaches increase
computational overhead. Adaptive mesh [3], irregular
mesh [4,5], and dynamical mesh [6] are proposed to reduce
the numerical dissipation without significantly increasing
computation. Rather than directly reducing the numerical
dissipation, several methods generate artificial details to
compensate for visual loss using vorticity confinement
[7,8] and subscale turbulence models [9,10]. Grid-based
methods require resampling flow field, which is equivalent
to the low-pass filter to smear out high-frequency compo-
nents. Particle-based methods only carry quantity but do
not dissipate quantity, which does not suffer from the
numerical dissipation problem. However, particle methods
have problems such as particle redistribution. Hybrid par-
ticle and grid methods [11,12] are proposed to leverage
advantages of particle and grid to reduce numerical
dissipation.

In this paper, we investigate the numerical dissipation
in smoke simulation in terms of where it comes out, what
impact it has, and how to combat it. The rest of paper is
organized as follows: we give a brief introduction to the
basic smoke simulation in Section 2 and address the
sources of the numerical dissipation in Section 3; in
Section 4 we investigate and compare methods of combat-
ing numerical dissipation from different aspects, following
by a conclusion in Section 5.

2. Background

Smoke and other gaseous phenomena are normally
simplified to be incompressible and homogenous, which
does not decrease the applicability to model basic dynam-
ical mechanisms. The NSEs to model smoke are derived as:

@u
@t ¼ �ðu � rÞuþ mr2u� rp

q þ f ðaÞ
r � u ¼ 0 ðbÞ

(
ð1Þ

where u is velocity, p and q denote pressure and fluid den-
sity respectively. m is kinematic viscosity to measure how
viscous the fluid is and f represents the resultant external
force. The two equations indicate that the fluid should con-
serve both momentum and mass. The first equation is
derived from Newton’s second law with left-hand term
presenting acceleration and right-hand terms the net force
exerted on fluid.

NSEs are too complicated to solve for analytical solution
directly. The NSEs usually break down into simple terms
including advection, pressure, diffusion, and external force
[2]. The simple terms can then be easily solved individu-
ally. If we define the terms as operators denoted by
A; P; D, and F, the operator S to solve NSEs can be written
as [13]:

S ¼ P � F �D �A ð2Þ

where

A : @q
@t ¼ �ðu � rÞq ðaÞ

D : @u
@t ¼ mr2u ðbÞ

F : @u
@t ¼ f ðcÞ

P : @u
@t þ

rp
q ¼ 0; so that r � u ¼ 0 ðdÞ

8>>>>>>><
>>>>>>>:

ð3Þ

where q can be velocity, temperature, or any other fluid
quantity.

3. Numerical dissipation as artificial viscosity

Numerical solutions are different from exact solution
due to numerical truncation errors. The truncation errors
include additional high-order terms which influence fluid
motion and appearance. We start with the simple one-
dimensional advection to analyze the impact on fluid
motion:

@q
@t
þ u

@q
@x
¼ 0; u > 0 ð4Þ

If we discretize it using forward Euler for the time
derivative and first-order backward difference for the
space derivative we can get:

qnþ1
i � qn

i

Dt
þ u

qn
i � qn

i�1

Dx
¼ 0 ð5Þ

We can rearrange it to get

qnþ1
i ¼ qn

i � Dt
qn

i � qn
i�1

Dx
u ð6Þ

Recalling the Taylor series for qn
i�1 gives

qn
i�1 ¼ qn

i �
@q
@x

� �n

i
Dxþ @2q

@x2

 !n

i

Dx2

2
þ OðDx3Þ ð7Þ

Substituting it into above equation and doing the can-
celation gives

qnþ1
i ¼ qn

i � Dx
@q
@x

� �n

i
uþ DtDx

@2q
@x2

 !n

i

uþ OðDx2Þ ð8Þ

Deleting the second-order truncation error and rewrit-
ing it gets

qnþ1
i � qn

i

Dt
þ u

@q
@x

� �n

i
¼ Dx

@2q
@x2

 !n

i

u ð9Þ

Which is the forward Euler in time applied to the mod-
ified PDE

@q
@t
þ u

@q
@x
¼ uDx

@2q
@x2 ð10Þ

The Laplacian of q in one dimension is r2q ¼ @2q=@x2.
Defining m0 ¼ uDx and substituting it into the equation
gives

@q
@t
þ u

@q
@x
¼ m0r2q ð11Þ
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