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This study evaluates the performance of three-dimensional variational (3DVar) and a hybrid data assimilation
system using time-lagged ensembles in a heavy rainfall event. The time-lagged ensembles are constructed by
sampling from a moving time window of 3 h along a model trajectory, which is economical and easy to imple-
ment. The proposed hybrid data assimilation system introduces flow-dependent error covariance derived from
time-lagged ensemble into variational cost function without significantly increasing computational cost. Single
observation tests are performed to document characteristic of the hybrid system. The sensitivity of precipitation
forecasts to ensemble covariance weight and localization scale is investigated. Additionally, the TLEn-Var is eval-
uated and compared to the ETKF(ensemble transformed Kalman filter)-based hybrid assimilation within a con-
tinuously cycling framework, through which new hybrid analyses are produced every 3 h over 10 days. The 24 h
accumulated precipitation, moisture, wind are analyzed between 3DVar and the hybrid assimilation using time-
lagged ensembles.
Results show that model states and precipitation forecast skill are improved by the hybrid assimilation using
time-lagged ensembles compared with 3DVar. Simulation of the precipitable water and structure of the wind
are also improved. Cyclonic wind increments are generated near the rainfall center, leading to an improved pre-
cipitation forecast. This study indicates that the hybrid data assimilation using time-lagged ensembles seems like
a viable alternative or supplement in the complex models for some weather service agencies that have limited
computing resources to conduct large size of ensembles.
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1. Introduction

The development of society and economy has great requirement for
numerical weather prediction (NWP), especially precipitation forecast.
Accuracy of initial condition is one of the main conditions influencing
forecast skill. The operational NWP centers usually enhance initial con-
dition with data assimilation technique. In order to introduce effective
synoptic information into initial condition, it is necessary to frequently
assimilate recent observations for short-range NWP (Benjamin et al.,
2004).

Several data assimilationmethods have been proposed and applied in
NWP, such as three-dimensional variational (3DVar), four-dimensional
variational (4DVar), ensemble Kalman filter (EnKF) and the hybrid
3DVar or 4DVar (Hybrid) methods. Among these methods, 3DVar has
been most widely used because of its advantage in computational cost
and convenience to implement (Wu et al., 2002; Barker et al., 2004).

However, 3DVar assumes that background error covariance is time-
invariant, homogeneous and isotropic, which conflicts with the reality
of “error of the day”, i.e. flow-dependence. 4DVar allows implicit evolu-
tion of the background error covariance along with the adjoint model,
but the use of static background error covariance at the start of each
4DVAR assimilation window represents a major limitation (Huang et al.,
2009; Zhang et al., 2014). Furthermore, the computational cost of 4DVar
is huge because of the adjoint and tangent linear models and develop-
ment and maintenance of them is also a hard work. The EnKF method,
in which the background error covariance is estimated from an ensemble
of short-term forecasts, provides an alternative to variational data assim-
ilation systems for its flow-dependence as well as convenience to imple-
ment (Evensen, 1994; Anderson, 2001; Bishop et al., 2001;Whitaker and
Hamill, 2002; Hunt et al., 2007). For smaller ensembles, however, the
EnKF is rank deficient and its background error covariance estimation suf-
fers from a variety of sampling errors, including spurious correlations for
widely separated locations (Hamill and Snyder, 2000).

The hybrid data assimilation method that couples ensemble-based
and variational data assimilation systems has emerged as an alternative
method (Hamill and Snyder, 2000) and become one of the research
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focuses in data assimilation field (Wang et al., 2008a,b; Zhang et al.,
2013; Schwartz and Liu, 2014). The hybrid assimilation method incor-
porates flow-dependent background error covariance derived from en-
semble into the variational cost function, so that the new background
error covariance comes froma combination of traditional static error co-
variance with ensemble error covariance which can be used to update
fields of observed model variables as well as fields of unobserved
model variables (Keppenne et al., 2014). The hybrid covariance takes
advantage of the relative strengths of both the EnKF and variational
methods and ameliorates the problem of rank deficiency caused by lim-
itation of ensemble size as well as isotropous, homogeneous and static
covariance caused by assumptions in 3DVar. Hybrid data assimilation
has been shown to bemore robust than conventional ensemble data as-
similation schemes, especiallywhen ensemble size is small or themodel
error is large (Wang et al., 2007; Zhang et al., 2013) and has been imple-
mented in several variational assimilation systems such as theWeather
Research and Forecasting (WRF) model data assimilation system
(WRFDA) (Barker et al., 2012) and the Gridpoint Statistical Interpola-
tion (GSI) system which has become operational at National Centers
for Environmental Prediction (NCEP) since 2012 (Wang et al., 2013).
However, the cost is significantly higher than the one by none ensemble
methods. For some weather service agencies, it is probably difficult to
afford the cost of ensemble model integrations, thus implementation
of hybrid assimilation may compromise between size of the ensemble
and the resolution of the model.

Therefore, to avoid huge cost of ensemble integrations in hybrid as-
similation system which assimilates observations and outputs forecast
products with high frequency, the time-lagged forecasts of short range
interval which are initiated from different past analysis times but verify
at a same forecast time are directly pulled together from history storage
to construct an ensemble in this study, namely time-lagged ensemble
(Zhou et al., 2010). The time-lagged ensemble initially proposed as an
alternative to Monte Carlo ensemble method (Hoffman and Kalnay,
1983) can be interpreted as forecasts obtained from a set of perturbed
initial conditions. The initial conditions which initialize the time-
lagged forecasts, the observations at different analysis times, the inte-
gration time and the lateral boundary conditions are all different for
the time-lagged ensemble members, thus the flow-dependent forecast
error can be a result of those conditions which cause the uncertainties
(Lu et al., 2007; Vogel et al., 2014). This kind of ensemble is built at
very low computational cost which does not require multiple integra-
tions of the numerical model and holds promise for high-resolution ap-
plications. It has been widely used in many research and operational
ensemble forecast systems (Yuan et al., 2008, 2009; Mittermaier,
2007; Trilaksono et al., 2012; Y. Chen et al., 2013; M. Chen et al., 2013;
Jie et al., 2014, 2015). It is noted that the traditional and standard
EnKF-based hybrid method should be a better choice in the presence
of sufficient computing resource. However, if the computational cost as-
sociated with data assimilation like EnKF and ensemble integrations is
not affordable, a compromise has to be made between the efficiency
and accuracy. In such scenario, a hybrid approach by merging the
time-lagged ensemble and 3DVar can be a choice because of its efficien-
cy and flow-dependent feature.

In this study, we construct a hybrid data assimilation system based
upon WRFDA using the time-lagged ensembles. To evaluate the effec-
tiveness and flow-dependence of the background error covariance de-
rived from time-lagged ensembles in precipitation forecast, this
system is applied and tested in a heavy rainfall event occurred in east
China and comparedwith ETKF-based hybrid assimilationwithin a con-
tinuously cycling framework over 10 days. Details are present in the rest
of the paper which is organized as follows. In Section 2, the basic meth-
odology of theWRFDA-based hybrid assimilation using time-lagged en-
sembles (“TLEn-Var” for short) is introduced. Section 3 describes the
rainfall event and Section 4 details themodel and data assimilation con-
figurations as well as the experiment design. Results are presented in
Section 5 before we conclude in Section 6.

2. Methodology

The cost function of hybrid data assimilation inWRFDA is defined as
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In Eq. (1), the first term of right hand is the background term associ-
atedwith the static covarianceB. The second term is associatedwith the
ensemble covariance.α is the ensemble extended control variable.A de-
fines the spatial covariance of α. The third term is the observation term,
yo′=yo−Hxb is the innovation, yo denotes the observation, xb is the
background forecast, and H is the nonlinear observation operator. H is
the linearized observation operator, and R is the observation error co-
variance. Factors β1 and β2 respectively define the weights placed on
the static background error covariance and the ensemble covariance.
β1 and β2 are constrained by 1/β1+1/β2=1 to conserve the total back-
ground error variance.

The analysis increment of the hybrid is a sum of two terms, defined as
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where δx1 is the increment associated with the static background covari-
ance, and the second term is the increment associated with the flow-
dependent ensemble covariance. N is the ensemble size. For traditional
(EnKF-based) hybrid assimilation, xn ,be is the nth ensemble perturbation
normalized by
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where xn ,b is the nth ensemblemember andxb is the ensemblemean, pro-
vided by the ensemble forecast that is usually initialized by an EnKF data
assimilation system.

However, for the hybrid assimilation using time-lagged ensembles,
the flow-dependent ensemble error covariance are computed by differ-
ences of N previous instances of the model state vectors sampled from
the recent history of the current model run. The differences between
the time-lagged forecasts launched at different analysis times but verify
at the same leading time are calculated and normalized by

ffiffiffiffiffiffiffiffiffiffiffi
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In Eq. (4), xi and xj are time-lagged ensemble members, the total

number of xn ,be is calculate by ∑
N−1

i¼1
i. For example, in this study the deter-

ministic forecast range is 48 h with an output interval of 3 h, then we
can obtain 16 time-lagged ensemble members at each analysis time.
The differences between time-lagged ensemble members are x2−x1,

x3−x1,…, x16−x1, x3−x2, x4−x2,…, x16−x2,…. Thus ∑
15

i¼1
i ¼ 120 dif-

ferences are generated. Next these differences can be used as the en-
semble perturbations in a hybrid assimilation run (Fig. 1). The
perturbations introduced here come from the time-lagged differences
in a singlemodel integration and themain goal of this method is to cre-
ate ensembles with low computational cost, which are used for the cal-
culation of flow-dependent error covariance.

The underlying assumption in the TLEn-Var is that forecast errors in
data assimilation are primarily phase errors in time (Keppenne et al.,
2014). The time-lagged forecasts in an ensemble are launched at differ-
ent analysis times after assimilating different observations but verifies
at the same leading time, and the integration time and lateral boundary
between members are also different, taking the time evolution of fore-
cast error of different time-lagged ensemble members into account.
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