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High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as
the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing
and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of
high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map near-
surface permafrost through decision and regression tree approaches that statistically and spatially extend field
observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and
subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels)
maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates
throughoutmainland Alaska. Our calibratedmodels (overall test accuracy of ~85%)were used to quantify chang-
es in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical
factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface
permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest
that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly re-
gions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon
pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and
severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone.
The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assess-
ments, and a wide-array of geophysical studies.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Climate change has led to an increase in high-latitude air
temperatures that are nearly double that of the global average
(Intergovernmental Panel on Climate Change (IPCC), 2007). This in-
crease in air temperature has led to widespread thawing and degra-
dation of permafrost (Jorgenson, Racine, Walters, & Osterkamp,
2001; Jorgenson, Shur, & Pullman, 2006), which has associated im-
pacts on ecosystems, socioeconomics, and the carbon cycle of high
latitudes. Climate warming is projected to continue in the Northern

Hemisphere through the 21st Century (IPCC, 2013), where perma-
frost is currently estimated to underlay approximately 22% of the
land surface (Brown, Ferrians, Heginbottom, & Melnikov, 1997).
Further warming could cause ground temperature increases, a
thickening of the active layer, talik formation, changes in hydrology
and topography, remobilization of carbon pools, coastal erosion, and
damages to infrastructure (Chapin et al., 2000; Grosse et al., 2011;
Jorgenson et al., 2010, 2013; Larsen et al., 2008; Osterkamp et al.,
2009; Walvoord & Striegl, 2007). Despite permafrost's influence on
ecosystem structure and functions, relatively little has been done
to quantify permafrost properties across large areas and in great detail.
While generalized and small-scale maps of permafrost properties exist
(e.g. Brown et al., 1997; Jorgenson, Yoshikawa, et al., 2008), these map
products do not account for important and local factors that influence
permafrost systems. The development of spatially detailed information
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of permafrost properties is important because it can serve as an input into
models predicting permafrost change. Thus, additional data and integra-
tive approaches are needed to adequately observe and monitor perma-
frost (National Research Council, 2014).

Detection and monitoring of permafrost is difficult, however, because
it is a subsurface condition of the ground, heterogeneous in nature,
and largely found in remote locations (Riseborough, Shiklomanov,
Etzelmüller, Gruber, &Marchenko, 2008). Spatial modeling of permafrost
properties have largely been conducted at coarse-scale resolutions
(N2 km × 2 km) (e.g. Brown et al., 1997; Jafarov, Marchenko, &
Romanovsky, 2012; Lawrence & Slater, 2005; Marchenko,
Romanovsky, & Tipenko, 2008), which do not represent fine-scale
differences in permafrost conditions and are unsuitable for land-
use planning and environmental assessments (Zhang, Olthof,
Fraser, & Wolfe, 2014). Furthermore, accuracy assessments conduct-
ed at coarse scales can be unreliable because of differences in scale
between maps and field observations, and assessments tend to
lack a diverse set of field observations for thorough validation and
calibration. More recently, several studies have applied process-
based or transient models to improve representation of permafrost
properties and dynamics at high resolutions (Panda, Marchenko, &
Romanovsky, 2014a,b; Zhang, 2013; Zhang et al., 2012, 2014) for
relatively small areas (i.e. b25, 000 km2) in Alaska and Canada.
However, because of high computational needs and the lack of de-
tailed soils data needed for process-based or transient simulations,
these approaches are currently impractical for mapping permafrost
across extremely large areas. Statistical-empirical models have also
been successfully applied to larger areas by quantifying relations
between permafrost properties and ecological factors influencing
the distribution of permafrost (Bonnaventure, Lewkowicz, Kremer,
& Sawada, 2012; Mishra & Riley, 2014; Pastick, Jorgenson, et al.,
2014). These automated approaches have been replacing the traditional
photo-interpreted, terrain-unit approach based on landform-soil associa-
tions (Jorgenson, Yoshikawa, et al., 2008; Jorgenson et al., 2014; Kreig &
Reger, 1982). Statistical-empirical models are particularly robust when a
diverse set of high-quality field and geospatial data are available, as dem-
onstrated in this study.

We overcome complexities inherent in permafrost mapping through
decision and regression tree modeling approaches that statistically and
spatially extend field observations using remotely sensed imagery, cli-
matic data, and thematic maps of a wide range of surface and subsurface
biophysical characteristics. This novel study expands upon decades of
permafrost-related research by producing the first medium-resolution
(30 m × 30 m) maps of near-surface (within 1 m) permafrost (NSP),
active-layer thickness (ALT: depth to surface of permafrost), and associat-
ed uncertainty estimates, throughout all of mainland Alaska. Calibrated
models were then used to quantify changes in permafrost extents under
varying climate scenarios while holding other biophysical factors con-
stant. Recently created soil carbon maps and simulated changes in near-
surface permafrost extent were then used to quantify frozen C pools
that are potentially liable to remobilization upon thaw. Ecological factors
influencing the distribution of NSP are also examined and discussed. The
work presented here provides a detailed depiction of the distribution of
permafrost properties in Alaska (excluding the Aleutian and Bering Sea
Islands), which is important for land-use planning, environmental assess-
ments, and a wide-array of geophysical studies.

2. Methods

2.1. Study area and field observations

Alaska (~1,500,000 km2) is composed of a diverse set of ecosystems,
and 80% of the land surface is estimated to be within permafrost zones
(Jorgenson, Yoshikawa, et al., 2008). Within this study, approximately
17,000 field measurements were used to represent permafrost proper-
ties across Alaska. These field observations were obtained from various

soil databases and researchers, with the majority of the dataset coming
from the Natural Resource Conservation Service (Clark & Duffy, 2003),
ABR, Inc. (Jorgenson et al., 1999; Jorgenson, Racine, et al., 2001;
Jorgenson, Roth, et al., 2001; Jorgenson, Yoshikawa, et al., 2008), and
the U.S. Geological Survey and U.S. Fish and Wildlife Service (Pastick
et al., 2013; Pastick, Jorgenson, et al., 2014). Field measurements of
ALT and the presence–absence of NSP were collected from 1990 to
2013. To circumvent the use of seasonal frost observations, only thaw-
depth measurements taken during late-season months (late July to
mid-September) or measurements designated to have no NSP were
used for model calibration and validation. Annual and slight seasonal
variations in active layer thickness and corresponding field measure-
ments could introduce biaswithin ourmodel estimates.While temporal
variability among field observationsmay be of some concern for ALT es-
timations, it is less likely to be of concern for estimations of the pres-
ence–absence of NSP because the presence–absence of permafrost is
designated at afixed depth interval and a smaller portion of the field ob-
servations would be affected by temporal variations in thaw depths.
Areas classified as open water, cultivated, perennial ice/snow, bare
soil, or developed areas, by the National Land Cover Database (Homer
et al., 2007), were masked out in this study, as these areas are typically
devoid or underlain by NSP. For instance, limited NSP field observations
coinciding with areas mapped as water (n = 243), perennial ice/snow
(n = 8), bare soil (n = 235), developed (n = 51), and cultivated
areas (n = 33) held mean NSP probabilities/frequencies of 28%, 88%,
21%, 25%, and 9%, respectively.

Though the field observations were unevenly distributed across
Alaska (Fig. 1), the samples represent all major ecoregions (Nowacki,
Spencer, Brock, Fleming, & Jorgenson, 2001), land cover types, and sur-
ficial deposits and soil textures (Jorgenson, Yoshikawa, et al., 2008).
Field observations of the presence–absence of NSP (n = 16,786;
Present = 4322; Absent = 12,464) followed temperature gradients as
expected, with more observations of the presence of NSP in colder re-
gions and more observations of the absence of NSP in warmer regions
of Alaska. The mean, median, standard deviation, and coefficient of
determination, of those NSPmeasurements where the ALTwas fully re-
solved (Fig. 2; n = 4834), were 58 cm, 49 cm, 32 cm, and 54%, respec-
tively. Field observations were also used to assess environmental
factors influencing the distribution of NSP, as discussed below.

2.2. Environmental predictors

Geospatial datasets served as environmental predictors in our per-
mafrost models and as a continuous estimation surface to which we
could apply predictive models. For the purposes of this study, environ-
mental predictors were resampled to a 30-m spatial resolution to better
match the scale of our field observations and the spectral information
used in this study. Environmental predictor information was then ex-
tracted to each point observation, compiled into a modeling database,
and incorporated into variable selection analyses. We explored the
utility of a large number of geospatial datasets, which can help depict
various surface and subsurface conditions, because permafrost responds
to awide range of ecological factors and is covered by surface vegetation
and soil within the active layer.

2.2.1. Topography
Regional topographic effects can influence permafrost properties

where permafrost conditions may vary with changes in elevation,
slope, and aspect (Peddle & Franklin, 1993). A downscaled 30-m resolu-
tion digital elevation model (Gesch et al., 2002) and derived terrain at-
tributes (i.e. slope, aspect, potential incident radiation, and a compound
topographic index) were incorporated into our analyses, as these attri-
butes can serve as proxies for soil moisture and run-off, and incident
radiation. The compound topographic index is a steady-state wetness
index (Gessler, Moore, McKenzie, & Ryan, 1995) and a function of both
slope and flow direction. Potential incident radiation was calculated
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