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a  b  s  t  r  a  c  t

Leaf  Area  Index  (LAI) is  an  important  parameter  of vegetation  structure.  A number  of  moderate  resolution
LAI  products  have  been  produced  in urgent  need  of large  scale  vegetation  monitoring.  High resolution  LAI
reference  maps  are  necessary  to  validate  these  LAI  products.  This  study  used  a geostatistical  regression
(GR)  method  to  estimate  LAI  reference  maps  by  linking  in  situ  LAI  and  Landsat  TM/ETM+  and  SPOT-HRV
data  over  two  cropland  and  two  grassland  sites.  To  explore  the  discrepancies  of  employing  different
vegetation  indices  (VIs)  on  estimating  LAI  reference  maps,  this  study  established  the  GR  models  for
different  VIs,  including  difference  vegetation  index  (DVI),  normalized  difference  vegetation  index  (NDVI),
and  ratio  vegetation  index  (RVI).  To further  assess  the  performance  of the  GR  model,  the  results  from  the
GR and  Reduced  Major  Axis  (RMA)  models  were  compared.  The  results  show  that  the  performance  of
the  GR  model  varies  between  the  cropland  and  grassland  sites.  At  the  cropland  sites,  the GR  model  based
on  DVI  provides  the  best  estimation,  while  at the  grassland  sites,  the  GR  model  based  on  DVI performs
poorly.  Compared  to  the  RMA  model,  the  GR  model  improves  the  accuracy  of  reference  LAI  maps  in terms
of root  mean  square  errors  (RMSE)  and  bias.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Leaf Area Index (LAI), defined as half the total leaf area per
unit ground surface areas (Chen and Black, 1992), is an impor-
tant parameter of vegetation structure and function (Abuelgasim
et al., 2006). LAI provides substantial information on the exchange
of energy, mass, and momentum flux between the Earth’s surface
and its atmosphere (Morisette et al., 2006; Myneni et al., 1997). LAI
has been widely used as an input in climate, hydrology, and biogeo-
chemistry models (Berterretche et al., 2005; Knyazikhin et al., 1998;
Morisette et al., 2006). To date, a number of global and regional
moderate-resolution LAI products have been produced, including
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Moderate Resolution Imaging Spectroradiometer (MODIS), Carbon
Cycle and Change in Land Observational Products from and Ensem-
ble of Satellites (CYCLOPES), Canada Centre for Remote Sensing
(CCRS), and Global Land Surface Satellite (GLASS) (Chen et al., 2002;
Tian et al., 2000; Weiss et al., 2007; Xiao et al., 2014). Owing to
the influence of model algorithms, vegetation heterogeneity, and
observation conditions, these LAI products inevitably have inher-
ent uncertainties (Chen et al., 2002), which subsequently may
impact the accuracy of any resulting modeling activities. Specify-
ing the uncertainties of these coarse spatial resolution LAI products
is essential for users to determine the most appropriate dataset
for their applications, and for producers to improve methodologi-
cal algorithms. However, a direct comparison between in situ LAI
measurements and these corresponding moderate resolution LAI
products is not recommended because of scale-mismatch, geoloca-
tion errors, and land surface heterogeneity (Huang et al., 2006; Yang
et al., 2006). The proposed way  to validate coarse resolution remote
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sensing products is using fine reference maps derived from up-
scaling in situ measurements (Fernandes et al., 2014; Iiames et al.,
2015; Kang et al., 2015; Morisette et al., 2006; Wang et al., 2014).
Previous studies have generated fine resolution LAI reference maps
through fusing in situ LAI measurements and fine resolution remote
sensing images (e.g. TM,  ETM+, ASTER, SPOT) (Baret et al., 2005;
Chen et al., 2002; Cohen and Justice, 1999; Garrigues et al., 2008;
Li et al., 2013a; Martinez et al., 2009; Morisette et al., 2006; Pisek
and Chen, 2007).

There are three categories of methods for estimating reference
LAI maps using in situ LAI observations and fine spatial resolu-
tion remote sensing data, including regression, vegetation radiation
transfer equation inversion, and geostatistical methods (Cohen
et al., 2003; Martinez et al., 2010; Yang et al., 2006). Of these, the
radiation transfer equation inversion method is not used widely
due to the difficulty in collecting certain model parameters (e.g.,
canopy structure) and the fact that the solution of the model is not
unique (Yang et al., 2006). Geostatistical methods have become
popular in linking field data to image data, and been applied to
estimate forest parameters (basal area, height, health conditions,
etc.), detect land use and land cover change, and map  vegetation
index (e.g., normalized difference vegetation index: NDVI and LAI)
(Van der Meer, 2012). Traditional geostatistical methods, such as
Kriging, predict unknown points through spatially interpolating
surrounding field observations (Berterretche et al., 2005; Li et al.,
2013a,b). The limited number of field observations and the spa-
tial non-stationarity of in situ observations distribution could lead
to uncertainty of predicting results. Regression methods, such as
ordinary least squares regression, attempt to improve the predict-
ing accuracy through accounting for high resolution remote sensing
data (e.g., reflectance or vegetation indices (VIs) derived from Land-
sat ETM+). Cohen et al. (2003) compared three regression methods
(i.e., traditional ordinary least squares regression, inverse ordinary
least square regression, and reduced major axis: RMA) over the
BigFoot AGRO and NOBS sites. They reported that the performance
of RMA  method was superior to the other two. However, none of
the regression methods consider the spatial/temporal correlation
of in situ observations and high resolution reflectance or VI data,
which may  lead to an underestimation of the uncertainty along
with the regression coefficients (Chatfield, 2003).

Geostatistical regression (GR) method conserves merits from
both traditional geostatistical methods and regression methods. It
has been used in examining the relationships between terrestrial
carbon dioxide flux and its primary environmental drivers (Mueller
et al., 2010), and estimating snow cover and gross primary pro-
ductivity (Erickson et al., 2005; Yadav et al., 2010). Compared to
traditional regression methods, the GR method is improved in one
distinct way, which is the ability to account for the spatial/temporal
correlation of the residuals from in situ observations (such as field
LAI measurements) and auxiliary data (such as NDVI) (Erickson
et al., 2005; Mueller et al., 2010; Yadav et al., 2010). Unlike tradi-
tional geostatistcal methods (e.g., Kriging), the GR method attempts
to provide better estimating of unknown points by exploring the
correlation between high resolution remote sensing data and field
observations. To our knowledge, no attempts have been made to
use the GR method to estimate LAI reference maps. This study
applied the GR method to estimate high resolution LAI reference
maps over cropland and grassland sites through fusing in situ LAI
measurements and high resolution remote sensing images (i.e.,
Landsat TM/ETM+ and SPOT). To investigate the discrepancy of
employing different VIs on estimating LAI reference maps, this
study established the GR models for the following VIs: difference
vegetation index (DVI), NDVI, and ratio vegetation index (RVI). To
robustly assess the performance of the GR model, the results from
GR and RMA  models were compared.

2. Methodology

2.1. Geostatistical regression method

The GR method not only models the relationships between
auxiliary variables (DVI, NDVI, and RVI in this study) and field
measurements (in situ LAI measurements in this study), but also
accounts for the spatial/temporal correlation of the regression
residuals (Erickson et al., 2005). As with the linear regression
method, the GR method decomposes LAI into a deterministic and a
stochastic component:

LAI = X  ̌ + ε (1)

where X (n × P) is the DVI, NDVI, and RVI, respectively, ˇ (P × 1) is
the corresponding regression coefficient, and ε (n × 1) is assumed
to be second-order stationary and zero-mean residual for DVI,
NDVI, and RVI (Leung and Cooley, 2014; Mueller et al., 2010; Yadav
et al., 2010). Unlike the traditional linear regression approach,
which regards ε as white noise, the GR method uses spatial covari-
ance to recognize the spatial autocorrelation structure of the
regression residuals ε. The experimental covariance of residuals ε
for DVI, NDVI and RVI, respectively is:

Q (h) = E (ε (X) ε (X  + h)) (2)

where h is the spatial and/or temporal distance, Q (h) is the covari-
ance of residual at separation distance h (Erickson et al., 2005).
Many theoretical covariance functions (such as nugget, exponen-
tial, spherical, and Gaussian functions) can be used to model the
experimental covariance (Schabenberger and Pierce, 2001). In this
study, a linear combination of nugget and exponential functions is
used following the previous studies (Erickson et al., 2005; Li et al.,
2013a; Mueller et al., 2010). This function is defined as:

Q (h) =
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N is the measurement error or the variability at small scale that

is uncorrelated in space and/or time, �2
S is the variance of the vari-

ability correlated in space and/or time, and l is the correlation range
parameters (Leung and Cooley, 2014). The Restricted Maximum
Likelihood (RML), which maximizes the marginal distribution of the
covariance function parameters, is used to estimate the parameters
(�N , �s, l) (Kitanidis and Shen, 1996).

The best linear unbiased estimator of  ̌ on the basis of Aitken
(1935) is the generalized-least-squares estimator, that is, the value
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2.2. Reduced major axis method

To robustly assess the performance of the GR model, we com-
pare the results from GR and RMA  models. We  choose RMA  method
because it is regarded as the ‘standard’ method for estimating LAI
reference map  in BigFoot project (Berterretche et al., 2005; Cohen
et al., 2003), which is a well known project linking in situ mea-
surements, remote sensing and models to validate MODIS products
including LAI product. The form of RMA  is identical to a simple
linear regression method:

LAI = ˇ0 + ˇ1X + ε (5)

where X is DIV, NDVI, and RVI, respectively. ε is white noise residual.
RMA  method is superior to traditional ordinary least squares

regression when both dependent (LAI in this study) and indepen-
dent variables (DVI, NDVI, and RVI in this study) are measured with
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