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a  b  s  t  r  a  c  t

In this  study,  the  NIR-red  spectral  space  of  Landsat-8  images,  which  is  manifested  by  a  triangle  shape,
is  deployed  for  developing  two  new  Soil  Moisture  (SM)  indices.  First,  ten parameters  consisting  of  six
distances  and  four  angles  were  extracted  using  the  position  of  a random  pixel  in  this  triangle.  Then,  some
correlation assessments  were  made  to derive  those  parameters  that  were  useful  for  SM estimation,  which
were five  parameters.  To  build  a soil moisture  index,  all combinations  of  these  five parameters,  which
were  in  total  31  different  regression  equations,  were  considered,  and  the best  model  was  named  the
Triangle  Soil  Moisture  Index  (TSMI).  The  TSMI  consists  of  three  parameters.  It  showed  a RMSE  of  0.08  and
correlation  coefficient  (R)  of  0.67. Since  the TSMI  does  not  consider  vegetation  interface  in SM estimation,
the  Modified  TSMI  (MTSMI),  which  takes  into  account  the  fraction  of soil  cover  in each  pixel,  beside  those
parameters  which  were  used  in  the  TSMI,  was  developed  (MTSMI:  RMSE  =  0.07,  R =  0.74).  The  results  of
the  TSMI  and  MTSMI  were  compared  with  each  other,  and  with  another  soil  moisture  index  (SMMRS
introduced  by  Zhan  et al.  (2007)).  It was  concluded  that  the TSMI and MTSMI  provide  similar  results  for
bare soil  or  sparsely  vegetated  surfaces.  However,  the  MTSMI  demonstrated  a much  better  performance
in  densely  vegetated  surfaces.  The  accuracy  of both  the  TSMI  and MTSMI  were  significantly  higher  than
the  SMMRS.  Moreover,  the  TSMI  and  MTSMI  were  validated  by comparison  with  field  measured  SM  data
at five  different  depths.  The  results  showed  that  satellite  estimated  SM  by these  two  indices  was  more
correlated  with  in  situ  data  at 5  cm  soil  depth  compared  to other  depths.  Also, to show  the high applica-
bility  of the  proposed  approach  for  SM  estimation,  we selected  another  set of  field  SM  data  collected  in
Australia.  The  results  proved  the  effectiveness  of the  method  in  different  study  areas.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Spatio-temporal distribution and variation of Soil Moisture (SM)
is important in many studies, such as drought monitoring (Ghulam
et al., 2007a,b; Raja Shekhar et al., 2014; Zhang et al., 2015),
rainfall assessment (Van Rooy, 1965), water-budgeting processes
(Jackson et al., 1981), evapotranspiration (Pengxin et al., 2003), for-
est management (Bowyer and Danson, 2004). Since soil has various
spectral patterns in different wavelengths, Remote Sensing (RS)
data ranging from visible to microwave has been widely used in
SM assessment. Generally, all RS methods for SM monitoring can
be classified into four categories: optical RS, thermal RS, microwave
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RS, and hybrid methods. In Section 1.1, different RS methods for SM
monitoring are discussed and in Section 1.2, a brief description of
NIR-red spectral space and its application in SM estimation, which
is closely related to this study, is discussed.

1.1. Remote sensing approaches for soil moisture estimation

Optical RS methods usually apply the visible, Near Infrared
(NIR) and Shortwave Infrared (SWIR) data for SM modeling. Many
researches have used different vegetation indices to assess dryness
and SM (Jackson et al., 1981; Ghulam et al., 2007b; Zhang et al.,
2015). In this regard, several studies have reported that the Nor-
malized Difference Vegetation Index (NDVI) has a noticeable utility
for observing drought and SM (Kogan, 1990; Liu and Ferreira, 1991;
Di et al., 1994). High correlation has been identified between the
annual or monthly time integrated NDVI and drought related cli-
mate factors such as precipitation (Yang et al., 1998; Peters et al.,
2002). The SWIR reflectance is sensitive to leaf liquid water content
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and has been shown to be more effective than the visible and NIR
at monitoring SM changes, as long as the SM content remains at
less than or equal to 50% of the volumetric water content (Lobell
and Asner, 2002). In this group, it should be considered that the
effects of surface roughness, soil structure and organic matters on
the reflectance of visible and NIR bands is a main limitation for SM
estimation (Zhan et al., 2007).

The history of thermal RS for SM monitoring can be traced back
to the beginning of the 1970s. Thermal RS approaches which have
been used for vegetation studies and SM estimation are classified
into three groups: the thermal inertia method, the vegetation evap-
otranspiration method, and the Crop Water Stress Index (CWSI).
These methods are established using the relationship between sur-
face emissivity, temperature and SM,  by mainly taking advantage
of the water circulation and energy balance principle (Sohrabinia
et al., 2012). The thermal inertia method is quite effective in bare SM
estimation. However, it demonstrates poor correlation for highly
vegetated surfaces. Furthermore, the retrieval of soil surface tem-
perature contains some uncertainties, and therefore, the final error
on SM extraction would be magnified (Zhan et al., 2007).

Microwave RS methods for SM estimation are mainly depen-
dent on the relationship between SM,  dielectric characteristics of a
specific target, and radar backscatters. Microwave RS has the capa-
bility of acquiring data under almost any meteorological conditions
and without an external source of illumination. There are mainly
three groups of models that apply active RS data for SM estimation:
backscattering models, statistical analysis techniques and neural
network application. Like thermal RS, active microwave methods
have some limitations in SM estimation over vegetated surfaces,
because active microwaves are strongly affected by surface rough-
ness and vegetation (Zhan et al., 2007). Also, passive microwave
RS methods are promising approaches for SM estimation. In this
regard, L-band passive microwave is the most applied channel to
monitor SM (Jackson et al., 1995; De Lannoy et al., 2013). Two  space
missions use this technology at the global scale with frequent revis-
iting times: Soil Moisture and Ocean Salinity (SMOS, launched end
of 2009), and Soil Moisture Active Passive (SMAP, launch sched-
uled in November 2014). The SMOS mission is the first space-borne
mission dedicated to SM monitoring. SMOS has multi-angular capa-
bilities, which are exploited by the SM retrieval approach: SM and
vegetation optical depth are retrieved simultaneously based on
SMOS multi-configuration observations, in terms of polarizations
and incidence angles (Fascetti et al., 2016; Champagne et al., 2016).
SMAP incorporates a radar and a radiometer, both operating at
L-band and at the incidence (observation) angle = 40◦. The spatial
resolutions of the corresponding active and passive microwave sig-
natures are ∼39 km × 47 km and ∼1 km × 1 km,  respectively. The
mission concept is to combine the complementary attributes of
the radar observations (high spatial resolution but lower SM accu-
racy) and radiometer observations (higher SM accuracy, but coarse
spatial resolution) to retrieve SM at a spatial resolution of 9 km
(Entekhabi et al., 2010).

The combination of visible, NIR, thermal and microwave wave-
lengths mostly results in better accuracy for SM estimation (Yu
et al., 2013). Wang et al. (2004) extracted SM information in
sparsely vegetated rangeland surfaces with ERS-2/TM I data by
correlating radar backscatters with NDVI and SM.  Both Goward
and Hope (1989) and Price (1990) found that the data in the LST
versus the NDVI scatter-plot falls into a triangular shape. Moran
et al. (1994) reported that the LST-NDVI space supported the “trape-
zoid” shape, namely the Vegetation Index/Temperature Trapezoid
(VITT). Regarding this method it should be noted that the spatial
resolution of visible, infrared and thermal bands of most satellites
is not the same, and some useful information is lost as a result of
spectral sampling, which should be carried out to construct the
spectral space of the NDVI and LST.

Effective soil depth for the remote measurement of SM has been
a controversial issue. Li and Dong (1996) examined the relationship
between satellite-derived NDVI, brightness temperature and SM,
and reported that the satellite data has a higher correlation with
SM at a 20 cm soil depth compared to the other soil depths. Liu
et al. (1997), and Zhang et al. (2015) reported that the effective
soil depth for SM assessment of visible and NIR remote sensing
data is 10 cm.  Chauhan et al. (2003), Dunne et al. (2007) and Finn
et al. (2011) found that RS methods have been relatively successful
in measuring SM at a depth of 5 cm from the top soil surface in
bare soil or soil with less vegetation cover. However, Ghulam et al.
(2007b) reported that at 0–5 cm soil depth, soil surface is affected
by wind speed and other external conditions, which could pose
some uncertainties in SM modeling.

1.2. NIR-red triangle space

Generally, from the red to SWIR spectral region, the reflectance
of bare soil increases slowly with two  water absorption bands
around 1.4 �m and 1.9 �m.  As the amount of SM content increases,
soil reflectance value decreases. When the NIR values are plotted
against the red reflectance values for pixels fully covered by bare
soil with different amounts of moisture, it is seen that the points
are scattered around a certain line, called the soil line (Fig. 1). This
line can be characterized by the following equation:

�NIR = ��red + b (1)

where, b, � , �NIR and �red are the intercept, slope, NIR and red
reflectance values, respectively. It should be noted that soil variabil-
ity associated with reflectance values is important. Therefore, the
distribution of the soil line is highly dependent on some parameters
such as organic matter, particle size distribution, iron oxide con-
tent, soil mineralogy (Ångström, 1925). In most studies, researchers
have used a soil line equation extracted from satellite images to
develop their own  models. However, it should be considered that
these soil line equations are not globally valid, and consequently
cannot be applied in other studies. Amani and Mobasheri (2015)
tried to reduce the uncertainty involved with the position of the
soil line by using the average of five different soil lines, introduced
by different researchers for different soil types.

If one plots the NIR reflectance against the red reflectance for
a part of an image containing both soil and vegetation, we gener-
ally see a triangle-shaped distribution of pixels, as shown in Fig. 1,
which was discovered first by Richardson and Weigand (1977).
Depending on the amount of vegetation cover, soil cover, SM con-
tent, vegetation species, and even plant growth stage in each pixel,
its corresponding position in this scatter-plot is different. Pixels
with high NIR and low red reflectance values are populated around
the upper vertex of the triangle and indicate the densest canopy,
while pixels near the soil line indicate little or no vegetation cover.
The base of this triangle represents the soil line connecting water
saturated soil (the lower left vertex) to the dry soil (the upper right
vertex) (Jensen, 2009).

This scatter-plot has been widely used for monitoring of drought
and SM,  classifying satellite images, and developing several vegeta-
tion indices, such as Perpendicular Vegetation Index (PVI), Simple
Ratio (SR), Soil-Adjusted Vegetation Index (SAVI), Leaf Area Index
(LAI). Some of the studies, which deployed this scatter-plot for SM
and drought assessment, are discussed in the following.

Zhan et al. (2007) introduced a new model called the Soil
Moisture Monitoring by Remote Sensing (SMMRS) based on the dis-
tribution characteristics of SM data in the NIR-red spectral domain.
Although their method was  simple, the vegetation interference on
SM assessment has not been taken into account, in their work.
Therefore, the model suffers from mixed information about soil and
vegetation. Taking advantage of the reflective and absorptive fea-
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