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a  b  s  t  r  a  c  t

To  design  broadband  matching  networks  for  microwave  communication  systems,  commercially  avail-
able  computer  aided  design  (CAD)  tools  are  always  preferred.  But  these  tools  need  proper  matching
network  topology  and  element  values.  Therefore,  in  this  paper,  a  practical  method  is  proposed  to  gener-
ate  distributed-element  matching  networks  with  good  initial  element  values.  Then,  the  gain  performance
of  the  designed  matching  network  can  be  optimized  employing  these  tools.  The  utilization  of  the  pro-
posed  method  is  illustrated  by means  of  the  given  example.  It  is  shown  that  proposed  method  provides
very  good  initials  for CAD  tools.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

In the design of high frequency communication systems, if
the wavelength of the operation frequency is comparable with
physical size of the lumped circuit elements, usage of distributed
elements is inevitable. Therefore, at Radio Frequencies (RF), design
of broadband matching networks with distributed elements or
commensurate transmission lines have been considered as a vital
problem for engineers [1].

Although analytic theory of broadband matching may  be
employed for simple problems [2,3], it is well known that this
theory is inaccessible except for simple problems. Therefore, for
practical applications, it is always preferable to utilize CAD tools,
to design matching networks with distributed elements [4–6].
Matched system performance is optimized by all the commercially
available CAD tools. At the end of this process, characteris-
tic impedances and the delay lengths of the transmission lines
are obtained. But performance optimization is highly nonlinear
with respect to characteristic impedances and delay lengths, and
requires proper initials [7]. Furthermore, selection of initial values
is vital for successful optimization, since the convergence of the
optimization depends on the selected initial values.

Therefore, in this paper, a well-established process is proposed,
to design broadband matching networks with equal length or com-
mensurate transmission lines. These lines are also called as unit
elements (UEs).
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2. Broadband matching problem

The broadband matching problem can be considered as the
design of a lossless two-port network between a generator and
complex load, in such a way  that power transfer from the source
to the load is maximized over a frequency band. The power trans-
fer capability of the lossless matching network is best measured by
means of the transducer power gain which can be defined as the
ratio of power delivered to the load to the available power from the
generator.

The matching problems can be grouped basically as single
matching and double matching problems. In the single match-
ing problems, the generator impedance is purely resistive and the
load impedance is complex. On the other hand, if both terminating
impedances are complex, then the problem is called as the double
matching problem.

Let us consider the classical double matching problem depicted
in Fig. 1. Transducer power gain (TPG) can be written in terms of
the real and imaginary parts of the load impedance ZL = RL + jXL and
those of the back-end impedance Z2 = R2 + jX2, or in terms of the
real and imaginary parts of the generator impedance ZG = RG + jXG
and those of the front-end impedance Z1 = R1 + jX1 of the matching
network as follows:

TPG(ω) = 4R˛Rˇ

(R˛ + Rˇ)2 + (X˛ + Xˇ)2
. (1)

Here if  ̨ = 1,  ̌ = G, and if  ̨ = 2,  ̌ = L.
The objective in broadband matching problems is to design the

lossless matching network in such a way  that TPG given by (1) is
maximized inside a frequency band. So the matching problem in
this formalism can be regarded as the determination of a realizable
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Fig. 1. Double matching arrangement.

impedance function Z1 or Z2. Once Z1 or Z2 is obtained properly, the
lossless matching network can be synthesized easily.

Real frequency line segment technique proposed by Carlin (RF-
LST) is one of the best techniques to determine a realizable data set
for Z2 [8,9]. In this method, Z2 is realized as a minimum reactance
function and its real part R2(ω) is resembled by line segments in
such a way that R2(ω) = ∑m

k=1ak(ω)Rk, passing through m-selected
pairs designated by

{
Rk, ωk; k = 1, 2, . . . , m

}
. Here, break points

(or break resistances) Rk are considered as the unknowns of the
problem. Then, these points are obtained via nonlinear optimiza-
tion of TPG.

The imaginary part X2(ω) =
∑m

k=1bk(ω)Rk of Z2 is also expressed
by means of the same break points Rk. It is important to note that
the coefficients ak(ω) are known quantities and they are calculated
in terms of the pre-selected break frequencies ωk. The coefficients
bk(ω) are obtained by means of Hilbert transformation relation
given for minimum reactance functions. If H {◦} represents the
Hilbert transformation operator, then bk(ω) = H

{
ak(ω)

}
.

In RF-LST, two independent approximation steps seem to be dis-
advantages of the method. Although it is possible to extend the
method to solve double matching problems, the computational
efficiency applies only for single matching problems.

The basic principle of the direct computational technique (DCT)
is similar to that of the real frequency line segment technique [10].
In this method, the real part of the unknown matching network
impedance R2 is written as a real even rational function. Then the
unknown coefficients of this function are optimized to get the best
gain performance.

In DCT, the unknown coefficients of R2 must be determined
so that R2 is a nonnegative even rational function, which in turn
ensures the realizability of the resulting impedance function Z2.
So in order to guarantee the realizability, an auxiliary polynomial
is utilized for constructing an intrinsically nonnegative real part
function R2. By the introduction of this polynomial, although the
realizability is simply ensured, the computational effort and the
nonlinearity of the transducer power gain with respect to the opti-
mization parameters are increased.

In Fettweis’s method, parametric representation of the positive
real back-end driving point impedance Z2 is utilized [11]. Namely,
the positive real impedance Z2 is expressed in a partial fraction
expansion, and then the poles of Z2 are optimized to get the best
gain performance of the system in the frequency band.

The parametric method constitutes an efficient approach for
solving single matching problems. The only problem is the initial-
ization of the location of poles, which may  be critical.

In all the methods explained briefly above, the lossless match-
ing network is described in terms of a set of free parameters by
means of back-end driving point impedance Z2. But, the matching
problem can also be described by means of any other set of param-
eters. In the real frequency scattering approach which is referred
to as the Simplified Real Frequency Technique (SRFT), the canonic
polynomial representation of the scattering matrix is employed to
describe the lossless matching network [12,13].

In another method proposed in [7,14], the back-end driving
point impedance of the matching network Z2 is modeled as a min-
imum reactance function, then, if necessary, a Foster impedance is
connected in series.

As the result of the explanation above, it is desired to express
the back-end impedance Z2 of the matching network in terms of
any set of free parameters. Then gain performance of the matching
network is optimized via (1). But the determination of the back-
end impedance expression is complicated. There is a very simple
and obvious way to determine the back-end impedance Z2 or front-
end impedance Z1 of the matching network. This is the crux of the
proposed method.

In the proposed method, these driving point impedances (Z2
or Z1) are determined utilizing the scattering parameters of the
lossless matching network, source and load reflection coefficients.
So in the next section, canonic polynomial representation of a
distributed-element two-port network is briefly summarized, and
then rationale of the proposed method is given.

3. Canonic polynomial representation of a distributed
element two-port network

Most of the design methods for microwave networks incor-
porate finite homogenous transmission lines of commensurable
lengths as ideal UEs [15]. By commensurate, it must be understood
that all line lengths in a network are multiples of the UE length.
Richards has shown that the distributed-element networks com-
posed of commensurate transmission lines (UEs) can be proceeded
in analysis or synthesis as lumped element networks under the
transformation

� = tanh p�,

where � is the commensurate delay of the transmission lines, p is
the usual complex frequency variable (p = � + jω) and � is the so
called Richards variable, � = � + j�.  Specifically, on the imaginary
axis, the transformation takes the form � = j� = j tan ω�.

Referring to the double matching configuration shown in Fig. 1,
the scattering parameters of the lossless matching network can be
written in terms of three real polynomials by using the well known
Belevitch representation as follows:

S11(�) = h(�)
g(�)

, S12(�) = �f (−�)
g(�)

,

S21(�) = f  (�)
g(�)

, S22(�) = −�h(−�)
g(�)

,

(2)

where g is a strictly Hurwitz polynomial, f is a real polynomial which
is constructed on the transmission zeros of the matching network
and � is a unimodular constant (� = ±1). If the two-port is recipro-
cal, then the polynomial f is either even or odd and � = f(− �)/f(�).

The polynomials
{

f, g, h
}

are related by the Feldtkeller equation

g(�)g(−�) = h(�)h(−�) + f (�)f (−�). (3)

It can be concluded from (3) that the Hurwitz polynomial g(�)
is a function of h(�) and f(�). If the polynomials f(�) and h(�) are
known, then the scattering parameters of the two-port network,
and then the network itself can completely be defined.

In almost all practical applications, the designer has an idea
about transmission zero locations of the matching network. Hence
the polynomial f(�) is usually constructed by the designer. For prac-
tical problems, the designer may  use the following form of f(�)

f (�) = f0(�)(1 − �2)n�/2 (4)

where n� specifies the number of equal-length transmission lines
in cascade, and f0(�) is an arbitrary real polynomial. A powerful
class of networks contains series or shunt stubs and equal-length
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