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a  b  s  t  r  a  c  t

The  integral  equations  of  high  frequency  electromagnetic  scattering  can  be  solved  numerically  by means
of the  method  of moments.  Higher  order  basis  functions  such  as B-splines  is a  means  to improve  the
accuracy.

For smooth  convex  scatterers  and  high  frequencies  the  oscillatory  behaviour  of  the  solution  makes  it
possible  to  obtain  sparse  matrices,  and  some  speedup,  through  modification  of  the  integration  path  in
the  integral  equation.  This  is straightforward  for the  two-dimensional  TM case.

In  order  to  increase  sparsity  and  handle  the standing  waves  that  are  prominent  for  the  TE  case,  the
shadow  region  can  be  treated  separately,  in  a  hybrid  scheme  based  on  a priory  knowledge  about  the solu-
tion.  An  accurate  method  to  combine  solutions  in this  hybrid  scheme  is presented.  The  hybrid  technique
reduces  the  number  of basis  functions  drastically  but high  accuracy  and  sparsity  are  not  fully  compatible.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

An object illuminated by an incident electromagnetic wave is a
scattering problem that is often treated by means of integral equa-
tions. The internal resonances of the object must be handled and
higher order basis functions are needed to improve accuracy [1,2].
Since both sparsity and hybrid techniques are implemented, the
investigation is restricted to two dimensions here [3].

A sparse version of the method of moments has been devel-
oped for the transverse magnetic (TM) case [4,5]. Sparsity was
obtained by modifying the integration contour in the integral equa-
tion. Scaling, or the use of asymptotic phase [6,7], combined with
the properties of the kernel of the integral equation produces spar-
sity.

In an earlier paper [8], we studied the transverse electric (TE)
case. For the TE case, the deep shadow cannot be left out since the
fields decay slower than for the TM case. There is also a standing
wave pattern in the deep shadow that needs to be resolved. These
TE features also appear for 3D problems where the two cases are
superimposed to some degree. Sparsity does not lead to a substan-
tial speedup of the computation for the TE case [8].

The present investigation deals with a hybrid scheme that com-
bines a solution that is known a priori in the shadow region, with a
B-spline expansion in the lit region.
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A first objective is to verify that the two  solutions can be con-
nected accurately so as to avoid purely numerical phenomena at
the matching points. A second objective is to investigate how the
use of a hybrid technique affects sparsity and accuracy. A third
objective is to find out if the numerical solution is sensitive to the
accuracy of the a priori solution used in the shadow. A hybrid tech-
nique is essentially a divide and conquer strategy and requires that
the subproblems can be reasonably well separated.

2. The matching problem

As shown in Fig. 1, an incident wave with wavenumber k
impinges on a cylinder that is very long so that the problem can
be modelled in two  dimensions. Depending on the polarisation of
the incident field, either of two  integral equations [9, p. 37] for the
surface current Js on the scatterer is applicable. The extinction the-
orem [10] and perfectly conducting (PEC) surfaces are used here.
In addition, a domain in the shadow, defined by the angle �a in
Fig. 2, is dealt with separately. The simplified 2D problem can then
be stated in the form,
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Fig. 1. A simple convex 2D geometry where an incident field induces a current
on  the surface of the scatterer. At high frequencies there is a well-defined shadow
region where the current is very small in the deep shadow. For the TE case there is
a  noticeable standing wave pattern in the deep shadow.

Fig. 2. Schematic illustration of the matching of the solution Ja priori in the shadow
zone and the spline solution in the lit zone. Two  smoothly decaying auxiliary func-
tions J+, J− are connected to the shadow solution Ja and combined with the spline
solution. The dots at the bottom are observation points. The circles indicate obser-
vation points that are not used in the testing.
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KM and KE denote the kernels given in the right hand sides of Eqs.
(1) and (2). Ja is a current that is assumed to be known a priori and
the corresponding terms are therefore grouped together with the
incoming field in this hybrid formulation. R denotes the distance
between the source and the observation point and �′ is the radius
corresponding to the source point. The boundary is defined by a
function b(�) and the radii for the source and the observation points
are,

�′(�′) = b(�′), (3)

�(�) = b(�) − ı. (4)

The parameter ı offers a possibility to adjust the smoothness of
the kernel of the integral equation. These aspects relate to efficient
evaluation of the matrix elements [11,8].

The internal resonances of the scatterer are dealt with by adding
the derivative of the equation [10] so as to produce a combined
integral equation. Eqs. (1) and (2) are multiplied by a complex factor
of order k and augmented with a regrouped version of the following
expressions,
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By approximating the surface current Js with a set of N − 2Na − p
basis functions and applying the integral equation at N − 2Na − p
testing points �i one obtains a dense linear system of equations for
the coefficients cj that determine the current.

Js(�′) = Ja +
N−Na−p∑
j=Na

cjNj,p(�
′) + J+ + J− (7)

The ansatz for the current Js is illustrated schematically in Fig. 2.
Ja = Ja priori is zero outside the domain defined by �a. The function J+
is given by,

J+(�′) = Ja priori, (8)

if �a < �′ < �d. In terms of �� = �′ − �d,
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when �d < �′ < �m. J+ is zero elsewhere and J− is defined in a similar
manner in accordance with Fig. 2. J+ and J− are defined separately
from Ja since they overlap with the spline expansion. Since they
are known a priori they will also eventually be grouped with the
incoming field in Eqs. (1), (2), (5) and (6).

J+ and J− must decay smoothly to zero and this is arranged with
the function in Eq. (9) that has vanishing derivatives at �d up to
order 2M.  The constant c is adjusted to produce a suitable decay.
As shown in Fig. 2, there are only a few splines overlapping close
to �a and 2� − �a. To compensate for this, J± has a flat part that
essentially eliminates the dependence on the spline solution in the
domains where the approximating capacity is poor.

B-splines Nj,p of order p are used [4,12]. The B-splines are poly-
nomials of order p with overlapping supports except for p = 0. For
a given angle �′, there are then in general p + 1 nonzero splines.
Fig. 2 shows the case with p = 2. When p is even, the p unused test-
ing points can be placed symmetrically, as illustrated by the small
circles in the figure.

3. Scaling

Earlier work on the TM case [6,4,7] describes an approach that
combines the oscillation of the current Js and the oscillation of the
kernel of the integral equation. The oscillation of the current is
factored out,

Js = J0(�′)fosc(�′). (10)

The simple form,

fosc = eikb(�′) cos(�′+ ), (11)
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