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Abstract

Drought frequency analysis provides a comprehensive view point by simultaneously considering duration and severity when assessing
drought risk. This study presents the applications of copula functions to construct confidence intervals of bivariate drought frequency curve. The
bivariate drought frequency curves were constructed using observed monthly rainfall after extracting drought properties such as severity and
duration. In order to construct the confidence intervals of bivariate drought frequency curve, 100 realizations of 100-year long monthly rainfall
were generated using the Copula-GARCH rainfall generation model, after investigating model performance of various copula functions. The
quantiles of drought severity for different drought durations were then calculated in accordance with bivariate frequency analysis. The
application results achieved in this study illustrates that the proposed method would be available for quantifying the uncertainty of bivariate
drought frequency curves in practice.
© 2014 International Association for Hydro-environment Engineering and Research, Asia Pacific Division. Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Droughts gradually occur over a long period of time without
noticeable immediate damage. However, the negative impact of
drought on the human and natural environment is substantial,
because spatial coverage and temporal duration of drought are
significantly greater than those of other natural disasters such as
floods and hurricanes. In addition, the adverse impacts of
drought are exacerbated by intensifying hydrologic cycle asso-
ciated with the process of global climatic change (World
Meteorological Organization (WMO), 2006). Unprecedented
patterns of drought and their corresponding socio-economic
impacts are constantly observed across the world (Cook et al.,
2004; Leblanc et al., 2009; Fang et al., 2010; Parry et al., 2012).

One of the most widely used methods to make preparedness
plans for drought is drought frequency analysis, in which the

probability distributions of drought properties, such as duration
and severity, are determined and their recurrence intervals are
estimated based on extreme value theory. It is also important
to note that the results of drought frequency analysis based on
a single property alone have been inconsistent (Fernández and
Salas, 1999; Chung and Salas, 2000; Cancelliere and Salas,
2004). In other words, the recurrence interval of the drought
duration and the drought severity can be different, even if both
values are obtained from the same drought event. To resolve
this issue, several studies suggested to consider multiple drought
properties simultaneously. In particular, joint probability density
functions that combine the two primary properties of drought
such as duration and severity have been studied extensively
(Kim et al., 2003; Salas et al., 2005; Mirakbari et al., 2010;
Yoo et al., 2012b). Several studies have also employed copula
functions to develop bivariate probability functions based on
joined-variable marginal probability distributions (Kao and
Govindaraju, 2008; Chebana and Ouarda, 2011; Lee and Salas,
2011; Lee et al., 2013).
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While bivariate drought frequency analysis includes both
drought duration and severity in a joint probability distribution
to develop a comprehensive prediction, values located in
marginal probability distributions are often unreliable. Drought
with a given recurrence interval and severity can have different
duration estimates, and drought with a given recurrence interval
and duration can have different severity estimates. This is
mainly due to the lack of sufficient recorded data, which is
limited to less than 100 years in most studies. Droughts
recorded over such limited time periods, often do not have
duration and severity values corresponding to the marginal
position of the bivariate drought frequency curve (or simply
when the drought of interest has a high recurrence interval).
To ensure the reliability of bivariate drought frequency
analysis, a sufficient amount of data must be obtained (Scott,
1992; Kim et al., 2006). To overcome this issue, this study
suggested confidence intervals within which the values from
the bivariate frequency curve could be considered reliable.
The confidence intervals were derived from time series of
rainfall generated with the copula-GARCH (Generalized
Autoregressive Conditional Heteroscedasticity) rainfall simulation
model. The greatest strength of the copula-GARCH model is
that it integrates the conditional dependence of variability
between variables in the simulation. Heteroscedasticity in
hydrologic time series including rainfall is widely reported
across the world (Wang et al., 2005; Modarres and Ouarda,
2012; Yusof and Kane, 2012), thus the copula-GARCH model
is more appropriate to simulate a rainfall time series than
other conventional approaches which are usually based on the
assumption of homoscedasticity.

The primary purpose of this study is to provide the confi-
dence intervals for bivariate frequency curve considering
drought duration and severity. This study suggests the confi-
dence intervals based on the simulated rainfall time series
using the copula-GARCH modeling approach. This study is
described as follows: Section 2 presents the theories, method-
ologies, and application results of the copula-GARCH rainfall
generation model; Section 3 explains the methodology to con-
struct bivariate drought frequency curves using copula func-
tions; Section 4 presents methodology to estimate confidence
intervals of bivariate drought frequency curve and discusses the
corresponding results; and Section 5 draws conclusions from
the overall results presented in this study.

2. Generating monthly rainfall

2.1. Copula-GARCH model

This chapter presents theories, methodologies, and application
results of the copula-GARCH rainfall generation model. The
GARCH model was developed as an alternative to models
based on the assumption of linearity between variables at
different time steps, which cannot account for the conditional
dependence of the variance or heteroscedasticity. It has been
widely applied, particularly in the field of finance and economics,
because of its strength in modeling variables of which the
variation is significant (Duan, 1996; Tse and Tsui, 2002;

Floros et al., 2007; Watanabe, 2012). Recently, the GARCH
model has been applied in simulating hydrologic time series
(Wang et al., 2005; Modarres and Ouarda, 2012; Yusof and
Kane, 2012).

In this study, Engle’s ARCH test was performed to detect
heteroscedasticity in rainfall time series collected at twelve
sites shown in Fig. 1. The null hypothesis of Engle’s ARCH
test is that a series of residuals exhibit no conditional
heteroscedasticity (Engle, 1988). The null hypothesis was
rejected at the 5% significance level for 7 of 12 sites. In addi-
tion, Fig. 2 shows the autocorrelogram for the square of the
residual (long-term mean subtracted from monthly rainfall) for
site #156, as representative test case. The lag-1 autocorrelation
of the square of the residual was 0.18. This means the monthly
rainfall deviation of any given month from its long term mean
was similar to that of the previous month. In this way the
GARCHmodel provided more realistic model results compared
to conventional approaches.

The GARCH (p, q) model is defined by Eq. (1).
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where subscript t represent the time step; Xt represents
residual series of the variable being modeled subtracted
from its mean, σt is the standard deviation of Xt, εt is the
random variable drawn from a distribution representing
Xt, p and q represents GARCH model dimensions; α0,
αk, and βk represents GARCH model parameters to be
estimated.

After investigating various values for p and q, we concluded
that the simple GARCH (1, 1) model provided good representation
for a variety of volatility processes. This is in accordance
with Bollerslev et al. (1992). The parameters of the GARCH
(1, 1) model were estimated using the maximum likelihood
method. The random variable εt in Eq. (1) was drawn from a
skewed student-t distribution, as Hansen (1994) suggested.
The skewed student-t distribution is known to well fit
the heavy-tailed data, and it can also handle slight skewness;
such a tendency was observed in rainfall data used in this
study. A copula function links the marginal distributions
of correlated variables and develop a single joint probability
distribution function, it is often incorporated with the GARCH
model.

Two types of copula function were considered in this study;
the rotated Gumbel copula and the Student-t copula, as given by
Eqs. (2) and (3), respectively.
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