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a b s t r a c t

Some individuals with type 1 diabetes mellitus find self-managed glycaemic control difficult due to the con-

founding influence of secondary effects. Stress and sleep deprivation temporarily lower insulin sensitivity

(SI), often resulting in hyperglycaemia, while aerobic exercise depletes glucose, leading to hypoglycaemia if

treatment is unchanged. This study tests the estimation of these factors and circadian rhythms of SI in noisy

data. Sparse, irregular and noisy virtual blood glucose data, mimicking the glycaemic dynamics of an individ-

ual with type 1 diabetes, was created via adapted pharmacokinetic–pharmacodynamic models of glucose and

insulin that included the impact of the secondary effects. A Gauss–Newton algorithm was used to recover the

original model parameters for SI, stress, fatigue and exercise. During longer identification periods, compensa-

tion was made for drift in SI. Monte Carlo analyses were undertaken to validate the methods. The coefficient

of variation (CV) in all parameters decreased as the data accumulated in proportion to the 1/
√

n rule (R2

> 99.9%). Relatively small biases from the original parameter values occurred (<1%). Long term drift trends

in SI were captured and did not obscure estimation of the secondary effects (biases < 1%, CV approximately

equivalent to drift free outcomes). Adherence to the 1/
√

n trend indicates a robust identification method and

the ability of accumulating data to override the effect of measurement error. Compensation for SI drift allows

viable observation of secondary effects and SI rhythms over longer time periods. Collectively, these outcomes

indicate that quality results for identified parameters could be obtained during in vivo studies.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Established type 1 diabetes mellitus is a metabolic disease char-

acterised by an almost absolute lack of pancreatic insulin production.

Individuals with this condition are dependent on exogenous insulin

and generally take two or more doses a day [36]. They must care-

fully monitor blood glucose (BG) levels to avoid hypoglycaemia, or

hyperglycaemia. Fear of hypoglycaemia frequently results in patients

tending toward hyperglycaemia [42]. Increased incidences of hypo-

and/or hyper-glycaemia are associated with reduced quality of life in

diabetes [35] and a number of long-term complications [36,38,32,11].

There is significant potential benefit in developing effective gly-

caemic control mechanisms for individuals with type 1 diabetes sim-

ilar to those used for the critically ill [7,29]. However, there are many

social and psychological factors that confound the type of regimented

glycaemic control used successfully in that cohort. In particular, some

Abbreviations: SI, insulin sensitivity; CV, coefficient of variation; BG, blood glucose;

CGM, continuous glucose monitor; DISST, dynamic insulin sensitivity and secretion

test; SC, subcutaneous; CI, confidence interval; CHO, carbohydrate.
∗ Corresponding author. Tel.: +64 3 3642987x7211; fax: +64 3 364 2078.

E-mail addresses: erin.mansell@pg.canterbury.ac.nz (E.J. Mansell),

paul.docherty@canterbury.ac.nz (P.D. Docherty).

social situations induce over consumption. Furthermore, stress, anx-

iety and frustration can affect glycaemic behaviour and occur inter-

mittently. Stress and related factors can be caused by self-monitored

blood glucose, regimented lifestyles, and unpredictable glycaemic

variability [36]. Thus, a further, necessary goal of glycaemic control

algorithms for this cohort should be to mitigate the psychological im-

pact of the control algorithm itself by allowing greater flexibility in

daily activities.

There are many secondary effects that influence glycaemic con-

trol. It is well established that emotional (as well as medical) stress

results in hyperglycaemia in individuals with type 1 diabetes [40,20].

This hyperglycaemia is due to insulin resistance caused by the en-

dogenous release of corticosteroids and catecholamines [42]. Sleep

deprivation is also responsible for changes in insulin sensitivity with-

out significant changes in cortisol levels [14]. In contrast, moderate-

intensity (aerobic) exercise can lower BG significantly, and eventually

causes hypoglycaemia if care is not altered [39,49]. These factors pro-

vide challenges for self-managed glycaemic regulation. Furthermore,

they are capable of confounding model-based control algorithms due

to the lack of quantitative evidence or direct identification of their

effect on glycaemia.

The use of physiological modelling has emerged in the field of gly-

caemic control for the critically ill [27,28,7]. Inter- and intra-patient
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Table 1

Parameter constants used to simulate the virtual patient glycaemic profiles in Eqs. (1)–

(6). The ∗ indicates parameters which were identified as variables from virtual data.

Parameter Description Value Unit

nI Plasma to interstitium transport

rate

0.02 min−1

nT Plasma insulin clearance rate 0.1 min−1

nC Cell metabolism of insulin 0.02 min−1

vP Volume of distribution of plasma

insulin

4.3 L

pG Glucose dependant balance 0.004 min−1

VG Glucose distribution volume 12.4 L

k1 Rate of glucose transfer from

stomach to gut

0.05 min−1

k2 Rate of glucose absorption from

gut

0.008 min−1

kX Rate of insulin dispersed from

injection site

0.01 min−1

G0
∗ Basal glucose level 4.5 mmol.L−1

Q0 Basal interstitial insulin level 4.23 mU.L−1

εmax
∗ Exercise coefficient 6.5 mmol.L−1

σmax
∗ Stress coefficient 0.3

ϕmax
∗ Fatigue coefficient 0.1

SI1
∗ Morning (8.30 am) SI peak 0.8 × 10−3 L.mU−1.min−1

SI2
∗ Midday (12 pm) SI peak 1.0 × 10−3 L.mU−1.min−1

SI3
∗ Afternoon (3.30 pm) SI peak 0.6 × 10−3 L.mU−1.min−1

variability provides challenges to maintaining glycaemic control for

individual patients. Thus, these modelling methods identify a number

of patient-specific parameters as well as using a priori population-

average parameters [7]. Recent developments have also been made

in the field of automated treatments for out-patients with type 1 di-

abetes that are using continuous glucose monitors (CGMs) [16,4,8].

Some of these developments also include compensation for stress

hyperglycaemia [42]. However, this type of treatment is still exper-

imental and has high cost and complexity [17,4]. Hence, it may be

more practical to improve upon conventional approaches such as

self-monitored glucose with multiple daily insulin injections [46,47].

Knowledge of relevant patient-specific parameters would benefit

model-based therapy support for insulin dosing information.

Sparse, irregular data provides challenges in uncovering clear

trends. Thus the purpose of this research was to test parameter esti-

mation in such data, identifying some of the key patient-specific sec-

ondary effects on glycaemic dynamics: stress, fatigue and exercise.

The data was generated in silico to mimic self-reported, diary-style

data with simulated self-monitored glucose measurement and omis-

sion errors. The results obtained from parameter identification were

assessed in accumulating data-sets over a Monte Carlo (MC) popula-

tion. Finally, the methods were tested for their ability to handle long-

term changes in insulin sensitivity (SI) that occur due to changes in a

patient’s metabolism [24,1,48].

2. Methods

2.1. The virtual patient model

To test the estimation of factors affecting glycaemic dynamics, a

virtual patient with type 1 diabetes was simulated in silico. The pa-

tient ingested regular meals and the occasional snack. They took in-

sulin boluses with meals as well as a constant insulin infusion to

mimic slow acting insulin. The virtual patient also participated in

moderate exercise several times a week and experienced days of

stress or fatigue several times per month.

The model used to simulate the glycaemic dynamics of the in sil-

ico patient is a variation of the clinically validated DISST model [21].

The adaptations include a nutrition model [19,44,45] and effects of

exercise, stress, fatigue and SI drift. The model consists of a priori pa-

rameters (definitions in Table 1), time-dependent inputs (definitions

in Table 2) and identified variables (Table 1). A flowchart showing the

order of dependent species in the model can be seen in Fig. 2.

First, subcutaneous insulin concentration (US) was modelled as a

kinetic delay from regular bolus doses and a basal infusion (UX):

U̇S(t) = kX (UX (t) − US(t)) (1)

Interstitial insulin concentration (Q) was modelled as being co-

dependent with plasma insulin (I) which is a function of US:

İ(t) = −(nT + nI)I(t) + nIQ(t) + kXUS(t)

VP

(2)

Q̇(t) = − (nI + nC)Q(t) + nII(t) (3)

Glucose absorbed into the gut (PS) was modelled as a kinetic de-

lay from regular meals of varying glucose content (PX) and randomly

timed snacks (PC) [19,44,45]:

Ṗs(t) = PX (t) + PC(t)

VG

− k1PS(t) (4)

Table 2

Time-dependent vector inputs for used to simulate the virtual patient, noting that the simulation uses 1 min reso-

lution.

Vector Description Value Unit

PX Meals

{
[400, 500] at 0800, 1200 and 1900 hrs daily

0 otherwise
mmol

PC Snacks

{
160 at 52 random t per year

0 otherwise
mmol

UX Insulin doses

{
1000 with meals

4 otherwise
mU

fε Exercise

{∈ [0.5, 0.6, . . . , 1.0] at 0830 to 1030 hrs, 3 days/week

0 otherwise

fσ Stress

{∈ [0.5, 0.6, . . . , 1.0] 3 days per 4 weeks

0 otherwise

fϕ Fatigue

{∈ [0.5, 0.6, . . . , 1.0] 5 days per 4 weeks

0 otherwise

g1 Morning SI basis

{0 1200 to 1530 hours

1 0830 hours

0 < g1 < 1 otherwisea

g2 Midday SI basis

{0 1530 to 0830 hours

1 1200 hours

0 < g2 < 1 otherwisea

g3 Afternoon SI basis

{0 0830 to 1200 hours

1 1530 hours

0 < g3 < 1 otherwisea

a Triangular basis function forms are pictured in Fig. 1.
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