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a b s t r a c t

Identifiability is a necessary condition for successful parameter estimation of dynamic system models. A
major component of identifiability analysis is determining the identifiable parameter combinations, the
functional forms for the dependencies between unidentifiable parameters. Identifiable combinations can
help in model reparameterization and also in determining which parameters may be experimentally
measured to recover model identifiability. Several numerical approaches to determining identifiability
of differential equation models have been developed, however the question of determining identifiable
combinations remains incompletely addressed. In this paper, we present a new approach which uses
parameter subset selection methods based on the Fisher Information Matrix, together with the profile
likelihood, to effectively estimate identifiable combinations. We demonstrate this approach on several
example models in pharmacokinetics, cellular biology, and physiology.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Identifiability analysis is a critical step in the parameter estima-
tion process which addresses whether it is possible to uniquely
recover the model parameters from a given set of data. For ordin-
ary differential equation (ODE) models, this problem is typically
broken into two broad and often overlapping categories: practical
identifiability, which incorporates practical estimation issues that
come with real data (such as noise and bias), and structural identi-
fiability, which considers identifiability issues inherent to the
model structure. This is often framed as a best-case scenario
wherein the data are assumed to be known completely (i.e.
smooth, noise-free and known for every time point). Structural
identifiability is a necessary condition for parameter estimation
with noisy data [1].

In the common case of model unidentifiability, a key concept in
identifiability analysis is that of identifiable combinations, i.e. com-
binations of parameters which are identifiable even if the individ-
ual parameters are not [1–3]. These combinations give information
on how to reparameterize a given model for identifiability and also
give insight into what additional parameters can be experimentally
measured to yield an identifiable model [2–6].

Many different analytical approaches to structural identifiabil-
ity have been developed [1,5,7–9]. However, these methods are
often restricted to specific classes of models, such as the Laplace
transform approaches used in linear ODE models [1,10,11], and dif-
ferential algebra methods used for rational function ODE models
[3,7,12,13]. They may also be difficult to implement algorithmi-
cally, computationally intensive, or not guaranteed to terminate,
making applications beyond relatively simple models more chal-
lenging [8,9,14,15].

In the case of unidentifiability, a range of analytical or symbolic
approaches to determining identifiable combinations have been
developed [3,5,6,13]. For example, the differential algebra
approach can be used to uncover identifiable parameter combina-
tions and reparameterizations of the model in terms of these com-
binations [3]. The differential algebra-based method in [3] uses
Gröbner bases to find a ‘simplest’ set of combinations, denoted
the canonical set. However, this can require the expensive calcula-
tion of large numbers of Gröbner bases [3]. A related approach to
the one presented here involves using a Jacobian matrix and solv-
ing a set of partial differential equations to determine identifiable
combinations and identifiable reparameterizations of a model
[5,6,16]. This approach provides a quite general framework for
determining structurally identifiable combinations, although it
does require a level of expert knowledge as there are a range of dif-
ferent tools and possible approaches for applying these methods.

By contrast, while most numerical approaches to identifiability
provide only local (rather than global) information about the
parameters, they are often more computationally tractable [17].
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Many of these methods have been used to address both structural
and practical identifiability, often by using simulated data (either
without noise or with a range of different noise assumptions,
depending on whether structural or practical identifiability is con-
sidered) [18–20]. Techniques used for numerically evaluating both
local structural identifiability and practical identifiability include
the Fisher Information Matrix (FIM) [21–26] and the profile likeli-
hood [18], among others [27–29]. However, development of
numerical methods for finding identifiable combinations for non-
linear ODE models has received somewhat less attention [17,18].

For a more comprehensive review of the different approaches to
identifiability analysis, the reader is referred to [30,31], which also
provide some comparison of the computational speed, ease-of-use,
and types of models to which each method is applicable.

In this paper, we propose a simple numerical approach to deter-
mining identifiable combinations. We make use of two established
numerical tools in identifiability analysis: the FIM (and associated
Cramer–Rao estimates of the covariance matrix), and the profile
likelihood [18,21–24]. Individually, there are gaps in the applica-
bility of each method (particularly for higher dimensional combi-
nations) [18], as discussed further below. Instead, our approach
builds on these two tools to determine local structurally identifi-
able combinations in nonlinear differential equation models.

2. Framework and definitions

2.1. Model structure

We begin by introducing the overall modeling framework and
identifiability definitions used here. Let the model be given by

_x ¼ f ðx; t;u;pÞ
y ¼ gðx; t;pÞ

ð1Þ

where _x is a system of first order ODEs, with t representing time,
and u the experimental input function(s), if any. The set of model
parameters to be estimated are given by p (typically real-valued).
The model output(s) are given by y, which represents the measured
variables—in our case assumed to be noise-free. We also let x0 rep-
resent the vector of initial conditions for xðtÞ, some or all of which
may also be unknown parameters to be estimated.

2.2. Identifiability

Identifiability analysis explores the question: given an input u,
model _x ¼ f ðx; t;u;pÞ and experimental output y, is it possible to
uniquely identify the parameters p? Structural identifiability
examines a ‘best-case’ version of this question in which we assume
‘perfect’ noiseless data. If parameter has a unique value p� which
yields a given output y�, it is considered globally (or uniquely) struc-
turally identifiable; if there is a unique value p� within a local neigh-
borhood of parameter space yielding y�, it is considered locally
structurally identifiable; and if there are a continuum of values of
p which yield the output y�, the parameter is considered unidenti-
fiable. A model is said to be globally structurally identifiable if all
the parameters are globally structurally identifiable; if any param-
eters are locally structurally identifiable or unidentifiable, the
model is also considered locally structurally identifiable or uniden-
tifiable, respectively. In the case of model unidentifiability, the
model parameters typically form identifiable combinations, i.e. com-
binations of parameters which are identifiable even though the
individual parameters are unidentifiable.

More formally, structural identifiability can be thought of in
terms of injectivity of the map U : p! y given by viewing the
model output y as a function of the parameters p [3,14]. We note
that because there may be some ‘special’ or degenerate values

for the parameter or initial conditions for which an otherwise iden-
tifiable model is unidentifiable (e.g. if all initial conditions are zero
and there is no input to the model), structural identifiability is
often defined for almost all parameter values and initial conditions
[3,13,14].

Definition 2.1. For a given ODE model _x ¼ f ðx; t;u;pÞ and output
y, an individual parameter p is globally (or uniquely) structurally
identifiable if for almost every point p� and almost all initial
conditions, the equation yðx; t;p�Þ ¼ yðx; t;pÞ implies p ¼ p�. Sim-
ilarly, a model _x ¼ f ðx; t;u;pÞ is said to be globally structurally
identifiable for a given choice of output y if every parameter is
globally structurally identifiable, i.e. the equation yðx; t;p�Þ ¼
yðx; t;pÞ has only one solution, p ¼ p�. Equivalently, a model is
globally structurally identifiable for a given output if and only if
the map U is injective almost everywhere, i.e. if there exists a
unique set of parameter values p� which yields a given trajectory
yðx; t;p�Þ almost everywhere.

Local structural identifiability can be defined in an analogous
way as for global structural identifiability (substituting finitely
many solutions for the unique solution in the definition above),
but it is often instead evaluated in a local neighborhood of a partic-
ular point in parameter space (particularly for numerical
approaches, e.g. as in [17,18,32]). We consider this form of local
structural identifiability in this work.

Definition 2.2. For a given ODE model _x ¼ f ðx; t;u;pÞ, input u, and
output y, a parameter p is said to be locally structurally identifiable
at p� if within a local neighborhood of p�, the equation
yðx; t;p�Þ ¼ yðx; t;pÞ implies p ¼ p�. Similarly, a model is said to
be locally structurally identifiable for a given choice of input and
output if every parameter is locally structurally identifiable.

While structural identifiability is often treated as a formal or
mathematical property and evaluated using analytical approaches,
a range of numerical approaches have also been developed to
investigate the structural identifiability properties of a model
[17,18,21–24,28,29,33,34]. Commonly used tools in these
approaches include parameter sensitivities [22–24], as well as pro-
file likelihoods [17,18]. Many of these rely on the idea that if one
uses sufficiently noise-free, frequently sampled simulated data
(so that the data is effectively ‘error-free’) for parameter estima-
tion, then any identifiability issues which arise must be due to
structural rather than practical identifiability issues [18,20].
Numerical approaches to structural identifiability often only
address local structural identifiability at a particular point in
parameter space, since they typically require numerical values
for the parameters to be used. However, this can often be partially
mitigated by testing a wide range of parameter values.

Practical identifiability extends the notion of structural identifi-
ability to deal with the case in which noisy/real data is used
[18,22,35]. A structurally identifiable model may still be practically
unidentifiable for a variety of reasons—for example, if the model
identifiability is highly sensitive to measurement error in the data
or if measurements are taken too sparsely and miss key features of
the system dynamics. In some cases, practically identifiable combi-
nations can be found, even within an otherwise structurally iden-
tifiable model (e.g. as seen in models of cholera in [20]).

2.3. Parameter graph

In examining the parameter identifiability structure, it is often
convenient to consider a parameter graph of the identifiable combi-
nations. While visualizing the parameter graph is not necessary for
the method, it is often useful to illustrate features of the parameter
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