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a b s t r a c t

In population genetic studies, the allele frequency spectrum (AFS) efficiently summarizes genome-
wide polymorphism data and shapes a variety of allele frequency-based summary statistics. While
existing theory typically features equilibrium conditions, emerging methodology requires an analytical
understanding of the build-up of the allele frequencies over time. In this work, we use the framework
of Poisson random fields to derive new representations of the non-equilibrium AFS for the case of
a Wright–Fisher population model with selection. In our approach, the AFS is a scaling-limit of the
expectation of a Poisson stochastic integral and the representation of the non-equilibrium AFS arises
in terms of a fixation time probability distribution. The known duality between the Wright–Fisher
diffusion process and a birth and death process generalizing Kingman’s coalescent yields an additional
representation. The results carry over to the setting of a random sample drawn from the population and
provide the non-equilibrium behavior of sample statistics. Our findings are consistent with and extend a
previous approach where the non-equilibrium AFS solves a partial differential forward equation with a
non-traditional boundary condition. Moreover, we provide a bridge to previous coalescent-based work,
and hence tie several frameworks together. Since frequency-based summary statistics are widely used in
population genetics, for example, to identify candidate loci of adaptive evolution, to infer the demographic
history of a population, or to improve our understanding of the underlyingmechanics of speciation events,
the presented results are potentially useful for a broad range of topics.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The allele frequency spectrum (AFS) describes the distribution
of allele frequencies over a large number of identical and indepen-
dent loci. In practice, the AFS is estimated by allele frequencies
recorded in a sample of individuals. Here, the recent progress in
whole-genome re-sequencing has significantly improved the ac-
cessibility of the AFS, and several allele frequency-based summary
statistics have become central measurements in population ge-
netic studies. The estimation of the AFS is then often based on poly-
morphic nucleotide sites, where the frequency of the derived allele
over a finite collection of sites in the sample is summarized. In this
context, the otherwise equivalent term ‘site frequency spectrum’
(SFS) is frequently used. For the purpose of generality, we here use
the term AFS.
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The theory of the AFS was initiated in the 1930s with
the classical work of Fisher and Wright in the framework of
diffusion theory including effects of natural selection (Fisher, 1930;
Wright, 1931, 1938). Subsequently, Kimura (1964) pioneered the
systematic use of stochastic processes in population genetics,
and developed the theory further. In particular, he considered the
equilibrium distribution of allele frequencies under irreversible
mutation in an ensemble of polymorphic loci (Kimura, 1970b).
Central to these successful applications of diffusion theory in
describing the equilibrium limit AFS for various mutation and
selection scenarios is the Green function representation of
diffusion process occupation time functionals (Karlin and Taylor,
1981). Then, in order to study the impact of natural selection on
the number of fixations in diverging species, Sawyer and Hartl
(1992) introduced the Poisson random field framework. The basic
assumptions of this approach are that new mutant alleles arise
according to a Poisson process, mutations are irreversible, and the
frequencies of the descendants of each mutation are described by
independent Markov processes (no linkage). The loss or fixation of
a mutant allele is captured by the separate events of extinction or
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fixation of theMarkov process. This collection ofMarkov processes
forms a Poisson random field in the sense that the limiting
distributions of the allele frequencies are independent Poisson
randomvariables. In particular, the number of fixations is a Poisson
randomvariablewith expected value increasing linearly over time.
Segregating mutations are, on the other hand, in equilibrium
with respect to time, and hence the marginal distributions of the
corresponding Poisson variables are stationary. In other words, the
AFS is assumed to be in equilibrium with respect to time.

More recently, Evans et al. (2007) initiated the study of the
non-equilibrium AFS in a single population including the effects of
natural selection, in the sense of deriving a function f (t, x) which
represents the expected fraction of alleles of frequency x existing
at some time t , given an initial fraction f (0, x) of alleles at time
t = 0. Some of the modeling parameters, such as population size
and selection intensity, are also allowed to depend on time. The
resulting non-equilibrium AFS f (t, x) is provided as a solution to a
partial differential equation (PDE), essentially the Kolmogorov for-
ward equation for the corresponding diffusion, linked to a given
rate ofmutational influx via a specific boundary condition of f (t, x)
as x → 0. An additional approximation method using moments
is employed to study the resulting allele frequencies in a sample.
Building on this approach, Zivkovic and Stephan (2011) provide an-
alytical results on the non-equilibrium AFS for the neutral case,
focusing on time-dependence arising due to changes in popula-
tion size. In the same direction, Zivkovic et al. (2015) consider the
case of natural selection and develop the moment approximation
method for a scenario of piecewise-constant population size start-
ing from an equilibrium.

In a parallel methodological track the AFS has been studied us-
ing the view of coalescent theory, where mutations are randomly
placed on the branches of a genealogy of a sample of individu-
als (Kingman, 1982). First, Fu (1995) obtained a representation of
the stationary AFS for a single population under the assumptions
of neutrality and constant population size, by deriving the mean
and variance of the number of mutations on each branch of a given
length. Griffiths andTavaré (1998) explored the duality relation be-
tween the neutral Wright–Fisher diffusion process and Kingman’s
pure death coalescent process further and addressed determinis-
tic changes in population size. Moreover, Wakeley and Hey (1997)
obtained a description of the joint AFS of two isolated populations
descending froma commonancestor under neutrality. Chen (2012)
elaborated on their work and extended it to multiple populations
and also modeled scenarios such as selective sweeps, influx of mi-
gration and changes in population size.

Here, we build on the work of Sawyer and Hartl (1992) and
develop the approach of Mugal et al. (2014) further to derive a
representation of the non-equilibriumAFS as the limiting expected
value of a suitable Poisson stochastic integral. The model is
developed in steps starting with finite population size N , where
individuals are represented by a collection of L independent sites,
subject to mutational influx of derived alleles and Wright–Fisher
reproduction in discrete generation time. Assuming that the
mutation rates and selection coefficients per individual per
generation are of order 1/N and rescaling evolutionary time t so
that it is measured in units of N generations, we then pass to
the continuous-time Wright–Fisher diffusion approximation, but
follow Evans et al. (2007) in keeping N as a modeling parameter.
In the next stage of approximation, the mutation rate per site is
assumed to tend to zero in such a way that the total mutation
rate across the collection of sites is constant, a procedure which
we interpret and implement as a limit in distribution as L → ∞.
The result is a Poisson random field parametrized by N , which we
study in some detail. Then, we find the limiting expected values
as N → ∞ and identify the time-dependent AFS which arises in
the limit. Thereby, we provide a link between the Poisson random

field approach by Sawyer and Hartl (1992) and the setting of Evans
et al. (2007), in particular by identifying the PDE solution f (t, x) in
terms of a Wright–Fisher fixation time probability distribution. An
additional representation is obtained by elaborating on the duality
relation between the Wright–Fisher diffusion process and a class
of birth and death processes, where birth rates are proportional to
the strength of selection (Shiga and Uchiyama, 1986; Athreya and
Swart, 2005).

2. Poisson random field model

2.1. Basic markov chain model

Consider a population containing N haploid individuals, where
each individual is represented by a collection of L independent
sites. Random mutation events act on sites, independently and
uniformly over individuals, replacing an ancestral allele by a
derived allele. Only mono-allelic sites are affected by mutation.
Thus, the setting of the model only allows for two alleles, the
derived and the ancestral, in each site. The composition of
ancestral and derived alleles per site changes in discrete steps
from one generation to the next according to the Wright–Fisher
model with selection, which relies on the following assumptions
(1) non-overlapping generations, (2) constant population size and
(3) random mating. The population dynamics are then given by a
collection of independent, identically distributedMarkov chains in
discrete time, {(X i

n)n≥0, 1 ≤ i ≤ L}, one component for each site.
The state variable is

X i
n = # of individuals in generation nwith the derived allele in

site i

and the state space of each chain is {0, 1, . . . ,N}. An example path
of the Markov chain is visualized in Fig. 1. Site i is said to be mono-
allelic at time n if it carries the ancestral allele throughout the
entire population, so that X i

n = 0. A trajectory (X i
n)n≥0 consists of

subsequentmono-allelic periods in state 0 and active polymorphic
periods with both ancestral and derived alleles present. Whenever
a derived allele reaches fixation in generation n, that is X i

n = N ,
then the derived allele is declared to be the new ancestral allele at
that site.

We let µ > 0 be the mutation probability

µ = probability per individual and generation that an ancestral
allele is replaced by the derived allele at a single
mono-allelic site,

and for each generation n and site i, we let J in be independent,
binomially distributed random variables, such that for i = 1,
. . . , L, n ≥ 1,

J in = # of mutations in generation n hitting a mono-allelic site i
∈ Bin(N, µ).

In the limit of small mutation rate µ → 0, such that Nµ is a small
probability, we have

P(J in = 0) = (1 − µ)N = 1 − Nµ + o(Nµ)

as well as

P(J in = 1) = Nµ + o(Nµ), P(J iN ≥ 2) = o(Nµ).

Hence, given X i
n in generation n, the random variable

J in+11{X i
n=0} = # of mutations in site i at generation n + 1

is approximately Bin(1,Nµ) distributed, for each i. It is the
injection of new derived alleles into the population at mono-allelic
sites, and the change-of-state of the Markov chain from 0 to 1,
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