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a b s t r a c t 

Telecommunication networks, as well as other network types, are critical infrastructures where any ser- 

vice disruption has a notable impact on individuals. Hence, studying network dynamics under failures or 

attacks is of paramount importance. In this paper, we assess the robustness of networks with respect to 

the spread of Susceptible-Infected-Susceptible (SIS) epidemics, using the N-Intertwined Mean-Field Ap- 

proximation (NIMFA). A classical robustness metric is the NIMFA epidemic threshold, which is inversely 

proportional to the largest eigenvalue of the adjacency matrix, also called the spectral radius. Besides the 

NIMFA epidemic threshold, the viral conductance has been proposed as a measure incorporating the av- 

erage fraction of infected nodes in the steady state for all possible effective infection rates. In general, the 

viral conductance provides more information about the network’s behavior with respect to virus spread- 

ing, however, the full picture is not always necessary. The aim of this paper is to understand when the 

spectral radius is adequate for reflecting robustness. By analyzing the relationship between spectral ra- 

dius and viral conductance in several graph classes, we show that the two metrics are highly correlated. 

We thus conclude that the spectral radius is sufficient to compare the robustness of networks belonging 

to the same class. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Much effort has been devoted in the analysis of the spread of 

epidemics, mainly due to the expected outbreak of new lethal bio- 

logical viruses affecting individuals and the increasing threats from 

cybercrime. In November 2014, for example, the Ebola epidemic 

caused 9596 laboratory-confirmed cases of individuals infected by 

the virus with 5459 total deaths, becoming the largest epidemic 

in history affecting multiple countries in West Africa. In addition 

to epidemic spread among individuals, there are other important 

scenarios like telecommunication systems, power grids and trans- 

portation networks, where the theory of the spread of epidemics 

can be applied to characterize their vulnerability. E-mail worms, 

computer viruses, the propagation of failures in power grids, and, 

more generally, the spread of information and epidemic dissemi- 

nation/routing in ah-hoc and peer-to-peer networks are just some 
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examples of scenarios, where studying the spread of epidemics is 

crucial for maintaining high levels of robustness. Assessing net- 

work robustness not only allows us to compare the robustness 

among different network topologies, but also gives insights in the 

design of future networks to mitigate the spreading of a virus or 

cascading failures, or maximize information diffusion (e.g. news, 

rumors, brand awareness, marketing of new products, etc.). 

In this paper, we focus on the spread of epidemics on telecom- 

munication networks. Network operators are mainly interested in 

understanding (a) how much robust their network is compared 

to other networks and (b) how to protect or modify their infras- 

tructure for improving its robustness minimizing costs. The aim of 

this paper is to answer the first question focusing on the spread 

of epidemics described through a Susceptible-Infected-Susceptible 

(SIS) model [1] . This model, which arose in mathematical biol- 

ogy, and its variants, are often used for the spread of viruses 

and malwares in computer networks [2–4] , and mobile social 

opportunistic networks [5] , epidemic information dissemination 

in unreliable distributed systems like P2P and ad-hoc networks 

[6] , cascading failures on BGP networks [7] and power grids [8] , 

smartphone malware propagation [9] , and epidemic spreading in 
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wireless sensor networks [10] . A network is represented by an 

undirected graph G ( N, L ), characterized by a symmetric adjacency 

matrix A in which the element a i j = a ji = 1 if there is a link be- 

tween nodes i and j , otherwise a i j = 0 . The infectious state of 

a node i in G is specified by a Bernoulli random variable X i ∈ 

{ 0 , 1 } : X i = 0 for a healthy node and X i = 1 for an infected node. 

A node i at time t can be in the infected state, with probabil- 

ity v i (t) = Pr [ X i (t) = 1] , or in the healthy state, with probability 

1 − v i (t) . Both the arrival of an infection over a link and the curing 

of an infected node i are assumed to be independent Poisson pro- 

cesses with rates β and δ, respectively, and the effective spread- 

ing rate is defined as τ = 

β
δ

. This SIS model can be expressed ex- 

actly in terms of a continuous-time Markov chain with 2 N states as 

shown in [11] . Since the exact solution v i ( t ) 1 ≤ i ≤ N for any network 

is intractable, several approximations of the SIS model have been 

proposed. In this paper, we focus on the N-Intertwined Mean-Field 

Approximation (NIMFA) [11] that was earlier considered in discrete 

time in [12] and in [13] , whose paper was later improved in [14] . 

NIMFA has been shown in [15] to be better than the widely used 

heterogeneous mean-field model of Pastor-Satorras and Vespignani 

[16] . 

A remarkable property of the SIS model is the existence of a 

phase transition [16] when the effective spreading rate approaches 

an epidemic threshold τ c : if τ > τ c , the infection becomes persis- 

tent, while if τ < τ c , the virus dies out and the network is virus- 

free. Many authors (see, e.g., [2,17–19] ) mentioned the existence of 

an epidemic threshold , however, the determination of this epidemic 

threshold is a long-standing open problem and a major contribu- 

tion of NIMFA is the lower bound τ (1) 
c = 

1 
λ1 

≤ τc , where τ (1) 
c is the 

NIMFA epidemic threshold and λ1 is the largest eigenvalue of the 

network adjacency matrix A , also called the spectral radius. The 

NIMFA epidemic threshold has been used as a measure for net- 

work robustness [20] . Recently, the viral conductance , introduced in 

[21,22] and analyzed in depth in [23] , was proposed as a robust- 

ness measure considering both the value of the epidemic thresh- 

old and the number of infected nodes at the steady state above 

the threshold. The viral conductance measures the integrated ef- 

fect over all possible viral infection strengths on the network’s in- 

fectious vulnerability and is shown to be a better robustness mea- 

sure than the epidemic threshold, considering that viral conduc- 

tance provides more information about the system’s behavior [22] . 

In this paper, we present an extensive analysis on the rela- 

tionship between the viral conductance and the spectral radius 1 

in telecommunication networks. We chose to model the relation- 

ship between epidemic threshold and viral conductance for the SIS 

model since these two robustness metrics have been defined for 

this epidemic model. For the SIR model, for example, which is vari- 

ant of the SIS model having a third state where a node can be re- 

covered (R), there exist similar bounds for the epidemic threshold 

[24] but there is not yet an expression for the viral conductance. 

This is the reason why we start analyzing the SIS model and leave 

the study of the relationship between the two robustness metrics 

in other epidemic models to future investigations. The aim of this 

analysis is to understand if both the two metrics are necessary 

for characterizing the robustness of a network with respect to the 

spreading of a virus. In particular, we have chosen to test a set of 

topologies to model the most widely diffused telecommunication 

networks (e.g. complete bipartite graphs for core telecommunica- 

tion networks, Erd ̋os–Rényi random graphs [25] for peer-to-peer 

and ad hoc networks, Watts–Strogatz small-world graphs [26] for 

mobile contact networks, Bárabasi–Albert [27] scale-free graphs for 

1 For the easier readability of the results obtained in this work, we consider the 

reciprocal of the NIMFA epidemic threshold (i.e. the spectral radius) when analyzing 

in deep the relationship between the two robustness metrics. 

social networks, etc.) and a set of real-world Internet backbones. 

The contributions of this paper can be summarized as follows: 

• we derive easy to use upper and lower bounds for the viral 

conductance as a function of the spectral radius; 

• via examples, we show cases where both the viral conductance 

and the spectral radius correctly compare the robustness be- 

tween two networks, and cases where the spectral radius fails 

to assess robustness; 

• we consider several graph classes representative of different 

types of networks and derive the relationship between the viral 

conductance and the spectral radius analytically, where possi- 

ble, or through a correlation analysis; 

• we show that the two metrics are highly correlated and hence, 

the information provided by the spectral radius is adequate for 

comparing the robustness of networks belonging to the same 

graph class. 

The rest of this paper is organized as follows. Section 2 reviews 

the literature and related works. Section 3 reviews NIMFA. The vi- 

ral conductance measure is described in Section 4 . Section 5 com- 

pares the viral conductance and the epidemic threshold through 

case studies. Section 6 and 7 analyze the relationship between the 

viral conductance and the spectral radius in various graph classes. 

Conclusions are summarized in Section 8 . 

2. Related works 

The spread of information or viruses, or the propagation of fail- 

ures in communication networks are similarly described as the 

virus spread in a biological population [28] . Biological epidemic 

models were initiated by Kephart and White [2] , for example, to 

describe the spread of viruses in computer networks. In classical 

epidemiology, epidemic models such as [1,29] introduced the basic 

reproductive number R 0 representing the average number of infec- 

tions due to a single infected case in the population. For R 0 < 1, 

the epidemic dies out without causing an outbreak while for R 0 > 

1, the epidemic spreads in the population. The basic reproductive 

number R 0 bears some resemblance with the epidemic threshold 

[16] defined in complex network theory for SIS epidemic models 

using the heterogeneous mean-field approach. However, the basic 

reproductive number R 0 does not contain any information about 

the underlying contact network. Since the structure of networks is 

rich and complex, R 0 is inadequate for assessing the threshold be- 

havior of an outbreak in most networks. 

In the literature dealing with the epidemic threshold in net- 

works, Wang et al. [13] proposed a discrete-time epidemic model 

to predict the infection size within a population suggesting that 

the epidemic threshold equals the reciprocal of the spectral radius 

of the adjacency matrix A . In another work, Van Mieghem et al. 

[11] studied SIS epidemics as a continuous-time Markov chain 

and introduced NIMFA, whose epidemic threshold was proved to 

be equal to the inverse of the spectral radius of A . In [30] , an 

heterogeneous version of NIMFA was used to design a strategy 

for controlling an epidemic outbreak in an arbitrary contact net- 

work by distributing vaccination resources throughout the net- 

work. More recently, NIMFA has been extended to model the 

SIS epidemic spread in networks of individuals partitioned into 

communities [31,32] , where the infection rate by which an in- 

dividual infects individuals in its own community is different 

from the inter-community infection rate. In another recent work 

[33] , NIMFA has been used to design resilient and secure net- 

works for cyber attack-induced cascading link failures in critical 

infrastructures. 

The epidemic threshold was initially used to assess network ro- 

bustness with respect to the spread of epidemics [20] : the larger 
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