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a b s t r a c t

This paper presents a nonlocal, derivative free model for transient flow in unsaturated, heterogeneous,
and anisotropic soils. The formulation is based on the peridynamic model for solid mechanics. In the pro-
posed model, flow and changes in moisture content are driven by pairwise interactions with other points
across finite distances, and are expressed as functional integrals of the hydraulic potential field. Peridy-
namic expressions of the rate of change in moisture content, moisture flux, and flow power are derived,
as are relationships between the peridynamic and the classic hydraulic conductivities; in addition, the
model is validated. The absence of spacial derivatives makes the model a good candidate for flow simula-
tions in fractured soils and lends itself to coupling with peridynamic mechanical models for simulating
crack formation triggered by shrinkage and swelling, and assessing their potential impact on a wide range
of processes, such as infiltration, contaminant transport, and slope stability.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Naturally occurring soils, especially fine-textured ones, exhibit
shrinking and swelling behavior [1–3]. These soils tend to swell
when their moisture content increases, and shrink when it
decreases. At the field scale, this behavior leads to tensile stresses
that may exceed the soil’s failure limit and trigger the formation
and evolution of cracks during drying phases. Cracks may in turn
close during infiltration phases when the soil becomes wetter
and swells [4–6] giving them a dynamic nature leading to highly
nonlinear responses. These desiccation cracks have a length scale
of ten to a hundred centimeters and their effect on the hydraulic
properties of the soil is not captured by standard laboratory tests
using a Representative Elementary Volume (REV) with a length
scale of a few centimeters.

Desiccation cracking has a wide spectrum of environmental,
agricultural, and hydrological impacts. The movement of moisture
and solutes into and within the soil increases due to the presence
of these cracks that act as preferential pathways for rapid water
movement to deeper layers [7–11]. This rapid movement may low-
er the effectiveness of irrigation [12] and causes fast seepage of
nutrients and pesticides away from the plants into deeper layers
reducing the contaminants’ residence time in the unsaturated zone
where they are usually absorbed by the plants and degraded by

bacteria, and increasing the probability of ground water and/or
surface water contamination, depending on the relief. In addition,
desiccation cracks can have a dramatic effect on processes of sur-
face water movement and flood dynamics by altering the partition-
ing of rainfall between infiltration and runoff, which is an
important issue to consider when modeling and forecasting flood
events.

Desiccation cracks also have engineering and geotechnical
impacts with potentially very serious environmental and public
safety repercussions. For example, desiccation cracks developing
at the surface of a slope may trigger the onset of a landslide. If they
develop in the core of an earth dam, cracks act as preferential
moisture flow paths, increasing the moisture content of the dam
and, with it, the pore water pressure which eventually leads to
its failure [13]. Clay barriers used in landfills and nuclear waste dis-
posal sites are also subject to desiccation cracking which reduces
the barrier’s containment effectiveness [14,15].

In this paper, we present a peridynamic model for transient
moisture flow in unsaturated, heterogeneous, and anisotropic soils.
The model is an alternative to the classic Richard’s equation and is
based on Silling’s reformulation of the theory of elasticity for solid
mechanics [16,17]. In the proposed model, we replace the classic,
local, continuum mechanics formulation by a nonlocal integral
functional. The model is free of spacial derivatives, and the flow
is driven by the hydraulic potential field instead of the gradient
of the hydraulic potential field. Katiyar et al. [18] have derived
similar peridynamic formulations for saturated steady state
flow.
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Due to the lack of spacial derivatives, this model is capable of
handling the spurious formation of cracks, which translate into
points of singularities in the parameter and hydraulic potential
fields, within the simulation domain without failing. This would
allow us to couple the derived model with a peridynamic mechan-
ical model and simulate the formation of desiccation cracks and
their dynamics and assess the potential of such an approach on
evaluating their impact on flow and solute transport. This coupling
is however the subject of a subsequent paper.

We would like to point out that the nonlocal aspect of the pro-
posed model is related to the mechanism of state change in the
domain. In classic nonlocal formulations [19–25], the new value
of a state is the one with the maximum likelihood and the change
is driven by some statistical measure of the gradient of the driving
field within the surrounding region. On the other hand, in peridy-
namic models such as this one, the change of state at a point is dri-
ven by the influence of the value of some field at points that are at
some finite distance away.

We will start by presenting the peridynamic model concept and
derive the peridynamic expression for the rate of change of mois-
ture content. We will then derive the peridynamic equations of
flow power dissipation and moisture flux, which we will use in
deriving the relationship between the peridynamic hydraulic con-
ductivity density and the classic hydraulic conductivity for
unsaturated, homogeneous, heterogeneous, isotropic, and
anisotropic soils. We will also show that the peridynamic model
equations of moisture flow and flux converge to the classic
Richard’s and Darcy’s equations at the limit of vanishing horizon.
This will be followed by a presentation of the numerical imple-
mentation and validation of the model in one and two dimensions.

2. Peridynamic flow model

Consider the homogeneous and isotropic body of soil X in Fig. 1,
where each point x in X represents a differential volume dVx [L3],
and is at some total hydraulic potential HðxÞ [L]. Suppose the
change in moisture content at every point x in X is driven by pair-
wise interactions with all other points x0 in X despite the finite dis-
tance separating each pair points.

Suppose also that these pairwise interactions are equivalent to a
one dimensional resistive pipe that acts as a conduit and does not
store any moisture, that we will call peripipe, and that each perip-
ipe has a property called the peridynamic hydraulic conductance
density, Cðx;x0Þ [T�1L�4], which is equal to the volume of moisture
that will flow per second in peripipe xx0 per unit hydraulic poten-
tial difference, per unit volume of x, and per unit volume of x0.

We can now define the pairwise interaction which we will call
the peridynamic flow density function Jðx;x0Þ [T�1L�3], as the rate
of moisture flow from point x0 to point x per unit volume of x
per unit volume of x0:

Jðx;x0Þ ¼ Cðx; x0Þ½Hðx0Þ � HðxÞ�; ð1Þ

where the peripipe conductance Cð�Þ is calculated from the peridy-
namic hydraulic conductivity density, jðx0;xÞ [T�1L�3], an intrinsic
material property which is not equal to, but can be related to the
classic hydraulic conductivity K [LT�1].

Cðx;x0Þ ¼ jðx0;xÞ
kxx0k : ð2Þ

The change of moisture stored at x, and that of point x0 mediated by
peripipe xx0;DVmðx;x0Þ [L3], and DVmðx0;xÞ [L3] respectively are
given by:

DVmðx;x0Þ ¼ jðxx0Þ ½Hðx
0Þ � HðxÞ�
kxx0k dVx0dVx; ð3Þ

DVmðx0; xÞ ¼ jðx0xÞ ½HðxÞ � Hðx0Þ�
kx0xk dVxdVx0 : ð4Þ

Because peripipes do not store any moisture, and due to conserva-
tion of mass we have DVmðx;x0Þ ¼ �DVmðx0;xÞ, and because
kxx0k ¼ kx0xk, we get the following restriction on jð�Þ:

jðx0;xÞ ¼ jðx;x0Þ: ð5Þ

Using Eq. (1), the total change in volumetric moisture content at
any point x in X due to its interaction with all other points x0 in
X, in addition to external sources, or sinks, of moisture at point
x; SðxÞ [T�1] is given by the following functional integral:

@h
@t
ðxÞ ¼

Z
X
jðx; x0Þ ½Hðx

0Þ � HðxÞ�
kxx0k dVx0 þ SðxÞ; ½T�1�: ð6Þ

Eq. (6) is the peridynamic equation of flow for unsaturated porous
media. Note that there are no restrictions on Cð�; �Þ beyond the
one stated in Eq. (5) and being integrable. Integrating this equation
over the entire domain X, we get the total change of moisture in the
domain:Z

X

@h
@t
ðxÞdVx ¼

Z
X

Z
X
jðx; x0Þ ½Hðx

0Þ � HðxÞ�
kxx0k dVx0dVx

þ
Z

X
SðxÞdVx; ½L3�: ð7Þ

Rewriting the first integral in the right hand side as follows:Z
X

Z
X

jðx0; xÞHðx0Þ
kxx0k dVx0dVx �

Z
X

Z
X

jðx0;xÞHðxÞ
kxx0k dVx0dVx; ð8Þ

and switching the variables x and x0 in the second integral and
reversing the integration order while keeping in mind the restric-
tion on Cð�; �Þ (Eq. (5)), we realize that Eq. (8) evaluates to zero,
and Eq. (7) becomes:Z

X

@h
@t
ðxÞdVx ¼

Z
X

SðxÞdVx: ð9Þ

Eq. (9) is a statement of conservation of mass in the domain and it
states that the total change in moisture content in the domain X is
equal to the total amount of moisture added, or removed from
external sources.

We will now introduce an additional property of a peridynamic
medium, which is that any two points x and x0 separated by a dis-
tance greater than a maximum distance d are too far apart to inter-
act. For every point x in X we will define the horizon of x as the set

Fig. 1. Peridynamic medium representation. Point x is influenced by all points
within its horizon. Hx is the horizon of x; d is the radius of the horizon.
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