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a b s t r a c t

In this paper, the fluid dynamics induced by a rigid lamina undergoing harmonic oscillations in a non-
Newtonian calm fluid is investigated. The fluid is modelled through the lattice Boltzmann method and
the flow is assumed to be nearly incompressible. An iterative viscosity-correction based procedure is pro-
posed to properly account for the non-Newtonian fluid feature and its accuracy is evaluated. In order to
handle the mutual interaction between the lamina and the encompassing fluid, the Immersed Boundary
method is adopted. A numerical campaign is performed. In particular, the effect of the non-Newtonian
feature is highlighted by investigating the fluid forces acting on a harmonically oscillating lamina for dif-
ferent values of the Reynolds number. The findings prove that the non-Newtonian feature can drastically
influence the behaviour of the fluid and, as a consequence, the forces acting upon the lamina. Several con-
siderations are carried out on the time history of the drag coefficient and the results are used to compute
the added mass through the hydrodynamic function. Moreover, the computational cost involved in the
numerical simulations is discussed. Finally, two applications concerning water resources are investi-
gated: the flow through an obstructed channel and the particle sedimentation. Present findings highlight
a strong coupling between the body shape, the Reynolds number, and the flow behaviour index.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

An accurate prediction of the flow physics induced by the
motion of solid bodies which are immersed in a viscous fluid rep-
resents an attractive and interesting challenge for scientists
involved in the study of computational fluid dynamics (CFD).
Moreover, a huge attention is devoted to CFD by the industrial con-
text, since a lot of practical applications can be covered. For exam-
ple, in the design of offshore platforms, the oil pipes can undergo
large oscillations due to the underwater streams or an approaching
storm. In aeronautics, the motion of a flapping wing can be signif-
icantly modified by a stream flow. In naval engineering, the impact
between the sea waves and the ship hulls may generally generate
impulsive forces, thus inducing considerable vibrations and local
structural damages on the ship due to stress concentrations and
fatigue phenomena. Another interesting aspect is related to the
non-Newtonian fluids, whose properties are very popular espe-
cially in geophysics and hydrology [1–4]. In the last decades, the
flow of a non-Newtonian fluid has received a huge attention due
to its important application in petroleum industry, environmental
remediation, chemical engineering and biological processes. For

example, the injection of iron particles has been investigated for
the remediation of aquifers [5,6]. Liquid pollutants, bitumen,
greases and even slurries can filtrate through the subsurface and
contaminate groundwater and underground reservoirs [7,8]. In
oil industry, the oil recovery process is usually enhanced by adopt-
ing non-Newtonian fluids, as chemical additives and foams, which
are often added to the injected water in order to the improve the
overall stability [9–11]. Polymer solutions can be even adopted
for NAPL recovery [12]. Concerning mining engineering, in low-
permeability formations non-Newtonian fracturing agents are
often employed [13–15]. Finally, studies on non-Newtonian fluids
arose to model blood flow, biomaterials and even dental tissues,
[16–19]. It is worth to remark that such kind of fluids exhibits
behaviours depending on the stress acting upon these. As a conse-
quence, if a solid body is immersed in a non-Newtonian fluid, the
forces acting upon the body are strongly related to the fluid–solid
mutual interaction.

As well known, the CFD numerical simulations can be per-
formed by solving the macroscopic-based Navier–Stokes equa-
tions. Although well consolidated, such approach is affected by
several drawbacks. For example, moving meshes are required if a
fluid–structure interaction (FSI) problem is simulated, thus involv-
ing a huge computational effort. In opposition to this methodology,
in the last decades the lattice Boltzmann (LB) method arose as a
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powerful tool showing that it recovers the solution of the Navier–
Stokes equations with a second-order accuracy [20]. The LB
method solves the mesoscopic-based Boltzmann’s transport equa-
tion on an Eulerian grid, which is kept fixed during the overall
analysis. Such method has proved to be an effective alternative
to classical CFD for solving several problems. In particular, phe-
nomena involving multiphase flows [21–24], transport in porous
media [25,26], shallow waters [27], mechanics [28–30], industrial
applications [31] and even flapping wings [32,33] have been suc-
cessfully modelled. Moreover, non-Newtonian fluids have been
investigated [34–39], showing that the non-Newtonian feature
can be accounted for by simply modifying the local viscosity via
the shear rate.

In this paper, the LB method is adopted to predict the fluid
dynamics induced by the harmonic motion of a rigid lamina which
is immersed in a non-Newtonian fluid. An implicit strategy is
developed to properly compute the shear rate-dependent viscosity
and its accuracy and convergence properties are evaluated. In
order to account for the presence of a solid body in the fluid lattice
background, the Immersed Boundary (IB) method [40,41] is
employed, following an implicit velocity-correction based strategy
[42]. According to a partitioned staggered explicit coupling algo-
rithm recently devised by the author [30], the LB and IB methods
are combined within a proper strategy, whose effectiveness has
been widely evaluated. Notice that the LB and IB methods have
been used to solve FSI problems involving Newtonian fluids by sev-
eral authors [43–46]. A numerical campaign is performed, which
devotes a special attention to the dependence of the forces acting
upon the solid on the non-Newtonian feature of the encompassing
fluid. A transverse harmonic motion is imposed to a rigid lamina
and the time history of the drag coefficient is investigated for dif-
ferent values of the flow behaviour index and for prescribed values
of the Reynolds and Keulegan–Carpenter numbers. Moreover, the
added mass experienced by the lamina is discussed by computing
the hydrodynamic function according to [47]. In addition, some
considerations on the involved computational effort are carried
out. Finally, two applications concerning water resources are
discussed. In the former, the development of the flow of a
non-Newtonian fluid in a channel obstructed by a sequence of
sharp-edged slats is investigated, aiming at simulating the flow
in a fractured tortuous medium. In the latter, the sedimentation
process of a cylindrical particle is dissected. All the tests confirm
a strong dependence of the flow physics on the Reynolds number,
the flow behaviour index and the body shape, as discussed.

The rest of the paper is organized as follows. In Section 2, the
numerical methods are recalled and the iterative viscosity-
correction based strategy is presented. In Section 3, numerical
results are discussed. Finally, in Section 4 some conclusions are
drawn.

2. Numerical methods

The problem is governed by the Navier–Stokes equations for an
incompressible flow and viscous fluid. Specifically, such equations
read as follows:

r � u ¼ 0; ð1Þ

@u
@t
þ ðu � rÞu ¼ � 1

q
rðpÞ þ mr2u; ð2Þ

where u is the flow velocity, t is the time, q and p are the fluid den-
sity and pressure, respectively, and m is the fluid kinematic viscosity.
For a non-Newtonian fluid, the viscosity depends on the shear rate _c
by the following relation,

mð _cÞ ¼ m _cn�1; ð3Þ

where m and n are the consistency and the flow behaviour indexes,
respectively. The first index, m, relates the tangential stress to the
velocity gradient. Specifically, increasing values of the tangential
stress arise as m grows, for a given velocity gradient. The second
index, n, leads to classify non-Newtonian fluids in two groups.
The former exhibits shear thinning (or pseudoplastic) properties
which arise if n < 1. The latter is characterized by n > 1 and it
includes shear thickening (or dilatant) fluids, whose viscosity
increases with the shear rate.

Concerning the definition of the problem, the fluid is initially at
rest and the no-slip boundary condition is enforced at the fluid–
solid interface. The LB and the IB methods are adopted to predict
the fluid dynamics and to account for the presence of an immersed
solid body, respectively. In the following, these methods are briefly
recalled.

2.1. The lattice Boltzmann method for non-Newtonian fluids

The lattice Boltzmann method is adopted to predict the fluid
dynamics. The two-dimensional lattice Bhatnagar–Gross–Krook
equation [48] is solved on a fixed square grid and the evolution
of the particle distribution functions fi are computed by

fiðxþ Dt ci; t þ DtÞ ¼ fiðx; tÞ þ
1

sðxÞ ½ f
eq
i ðx; tÞ � fiðx; tÞ� ð4Þ

being x the position, t the time (with an abuse of notation with
respect to Eq. (2)), s the relaxation parameter and Dt the time step.
The particle distribution functions are forced to move along pre-
scribed directions i with velocities ci defined as

ci ¼ 0; if i ¼ 0; ð5Þ

ci ¼ ½cosðði� 1Þp=4Þ; sinðði� 1Þp=4Þ�; if i ¼ 1;3;5;7; ð6Þ

ci ¼
ffiffiffi
2
p
½cosðði� 1Þp=4Þ; sinðði� 1Þp=4Þ�; if i ¼ 2;4;6;8: ð7Þ

The equilibrium particle distribution functions f eq
i are derived in the

form of a second-order expansion in the local Mach number, as
described in [49]. The macroscopic fluid density q and the flow
velocities v are computed as:

qðx; tÞ ¼
X

i

fiðx; tÞ; vðx; tÞ ¼
P

i fiðx; tÞci

qðx; tÞ ; ð8Þ

respectively. Notice that the relaxation parameter s is strictly
related to the fluid viscosity as m ¼ s� 1=2ð Þc2

s , being
c2

s ¼
P

wic2
i ¼ 1=3 with wi a set of 9 weights defined as w0 ¼ 4=9;

w1 ¼ w2 ¼ w3 ¼ w4 ¼ 1=9 and w5 ¼ w6 ¼ w7 ¼ w8 ¼ 1=36 in the
adopted D2Q9 model [50]. The problem is solved in lattice units,
where the lattice spacing Dx and the time step Dt are set to
Dx ¼ Dt ¼ 1.

In order to account for the non-Newtonian behaviour of the
fluid, the viscosity (i.e. s) should be properly modified. Specifically,
a power-law model is adopted allowing to define the viscosity as a
function of the shear rate _c, i.e. Eq. (3), where _c ¼ 2

ffiffiffiffiffiffi
DII
p

. The sec-
ond invariant DII of the strain rate tensor S is computed as
DII ¼ S : S. At each lattice node the strain rate tensor is readily
available through the following relation,

Sðx; tÞ ¼ � 3
2sðxÞ

X
i

fiðx; tÞ � f eq
i ðx; tÞ

� �
ci � ci: ð9Þ

As it is possible to observe, the problem is strictly non-linear. Spe-
cifically, the strain rate tensor S is computed through a viscosity
that is different from the one computed by Eq. (3). Thus, at each lat-
tice site x the following iterative procedure is adopted to achieve a
proper value of the relaxation parameter to be used in Eq. (4):
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